Suppr超能文献

主要的 Syndecan-4 机械转导模式为内皮糖萼的剪刀状二聚体运动。

Principal mode of Syndecan-4 mechanotransduction for the endothelial glycocalyx is a scissor-like dimer motion.

机构信息

Department of Mechanical Engineering, University College London, London, UK.

出版信息

Acta Physiol (Oxf). 2020 Mar;228(3):e13376. doi: 10.1111/apha.13376. Epub 2019 Oct 3.

Abstract

AIM

Endothelial glycocalyx (EG) plays a pivotal role in a plethora of diseases, like cardiovascular and renal diseases. One hallmark function of the EG as a mechanotransducer which transmits mechanical signals into cytoplasm has been documented for decades. However, the basic question - how the glycocalyx transmits the flow shear stress- is unanswered so far. Our aim is to shed light on the fundamental mode of signal transmission from flow to the endothelial cytoskeleton.

METHODS

We conduct a series of large-scale molecular dynamics computational experiments to investigate the dynamics of glycocalyx under varying conditions (changing blood flow velocities and shedding of glycocalyx sugar chains).

RESULTS

We have identified that the main pathway of signal transmission in this system manifests as a scissors-like motion of the Syndecan-4 core protein. Results have suggested that the force transmitted into the cytoskeleton with an order of 10 ~ 100 pN, and the main function of sugar chains of a glycocalyx element is to protect the core proteins from severe conformational changes thereby maintaining the functionality of the EG.

CONCLUSION

This research provides a reconciling explanation for a longstanding debate about the force transmission threshold based on our findings. A new explanation has also been provided to relate the role of the EG as a mechanotransducer to its function as a microvascular barrier: the EG regulates the mechanotransduction by altering the median value and variation range of the scissor angle, and the EG governs the microvascular barrier via controlling the scissor angle which will affect the intercellular cleft.

摘要

目的

内皮糖萼(EG)在多种疾病中起着至关重要的作用,如心血管疾病和肾脏疾病。几十年来,人们已经记录了 EG 作为机械转导器的一个标志性功能,它将机械信号传递到细胞质中。然而,迄今为止,EG 如何传递流切应力的基本问题仍未得到解答。我们的目的是阐明从流动到内皮细胞骨架的信号传输的基本模式。

方法

我们进行了一系列大规模的分子动力学计算实验,以研究在不同条件下(改变血流速度和糖萼糖链脱落)糖萼的动力学。

结果

我们已经确定,该系统中信号传输的主要途径表现为 Syndecan-4 核心蛋白的剪刀状运动。结果表明,力以 10 到 100 皮牛顿的量级传递到细胞骨架中,糖萼元素的糖链的主要功能是保护核心蛋白免受严重的构象变化,从而保持 EG 的功能。

结论

这项研究为基于我们的发现的关于力传递阈值的长期争论提供了一个调和的解释。还提供了一个新的解释,将 EG 作为机械转导器的作用与其作为微血管屏障的功能联系起来:EG 通过改变剪刀角度的中位数和变化范围来调节机械转导,EG 通过控制剪刀角度来控制微血管屏障,这将影响细胞间裂隙。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验