Yuan Renliang, Zhang Jiong, Zuo Jian-Min
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
Intel Corporation, Corporate Quality Network, Hillsboro, OR 97124, United States.
Ultramicroscopy. 2019 Dec;207:112837. doi: 10.1016/j.ultramic.2019.112837. Epub 2019 Aug 29.
Scanning Electron NanoDiffraction (SEND) is a powerful and versatile technique for lattice strain mapping in nano-devices and nano-materials. The measurement is based on Bragg diffraction from a local crystal volume. However, the resolution and precision of SEND are fundamentally limited by the uncertainty principle and scattering that govern electron diffraction. Here, we propose to measure lattice strain using a focused probe and circular Hough transform to locate the position of non-uniform diffraction disks. Methods for fitting a 2D lattice to the detected disks for strain calculation are described, including error analysis. We demonstrate our technique on a FinFET device for strain mapping at the spatial resolution of 1 nm and strain precision of ∼3×10. Using this and simulations, the experimental parameters involved in data acquisition and analysis are thoroughly investigated to construct an optimum strain mapping strategy using SEND.
扫描电子纳米衍射(SEND)是一种用于纳米器件和纳米材料晶格应变映射的强大且通用的技术。该测量基于局部晶体体积的布拉格衍射。然而,SEND的分辨率和精度从根本上受到不确定性原理和支配电子衍射的散射的限制。在此,我们提议使用聚焦探针和圆形霍夫变换来测量晶格应变,以定位非均匀衍射盘的位置。描述了将二维晶格拟合到检测到的盘以进行应变计算的方法,包括误差分析。我们在一个鳍式场效应晶体管(FinFET)器件上展示了我们的技术,用于在1纳米的空间分辨率和约3×10的应变精度下进行应变映射。通过这个以及模拟,对数据采集和分析中涉及的实验参数进行了全面研究,以构建使用SEND的最佳应变映射策略。