Suppr超能文献

神经节苷脂使多组分膜中的脂质相分离失稳。

Gangliosides Destabilize Lipid Phase Separation in Multicomponent Membranes.

机构信息

Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Material, University of Groningen, Groningen, The Netherlands.

Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Material, University of Groningen, Groningen, The Netherlands.

出版信息

Biophys J. 2019 Oct 1;117(7):1215-1223. doi: 10.1016/j.bpj.2019.08.037. Epub 2019 Sep 6.

Abstract

Gangliosides (GMs) form an important class of lipids found in the outer leaflet of the plasma membrane. Typically, they colocalize with cholesterol and sphingomyelin in ordered membrane domains. However, detailed understanding of the lateral organization of GM-rich membranes is still lacking. To gain molecular insight, we performed molecular dynamics simulations of GMs in model membranes composed of coexisting liquid-ordered and liquid-disordered domains. We found that GMs indeed have a preference to partition into the ordered domains. At higher concentrations (>10 mol %), we observed a destabilizing effect of GMs on the phase coexistence. Further simulations with modified GMs show that the structure of the GM headgroup affects the phase separation, whereas the nature of the tail determines the preferential location. Together, our findings provide a molecular basis to understand the lateral organization of GM-rich membranes.

摘要

神经节苷脂(GMs)是一种存在于质膜外叶的重要脂质。通常,它们与胆固醇和鞘磷脂在有序的膜域中共定位。然而,GM 丰富的膜的侧向组织的详细理解仍然缺乏。为了获得分子见解,我们在由共存的液体有序和液体无序域组成的模型膜中对 GMs 进行了分子动力学模拟。我们发现 GMs 确实有优先分配到有序域的倾向。在较高浓度(>10 mol%)下,我们观察到 GMs 对相共存的不稳定性影响。用改性 GMs 进行的进一步模拟表明,GM 头部结构影响相分离,而尾部的性质决定了优先位置。总之,我们的发现为理解 GM 丰富的膜的侧向组织提供了分子基础。

相似文献

1
Gangliosides Destabilize Lipid Phase Separation in Multicomponent Membranes.
Biophys J. 2019 Oct 1;117(7):1215-1223. doi: 10.1016/j.bpj.2019.08.037. Epub 2019 Sep 6.
2
Influence of Ganglioside GM1 Concentration on Lipid Clustering and Membrane Properties and Curvature.
Biophys J. 2016 Nov 1;111(9):1987-1999. doi: 10.1016/j.bpj.2016.09.021.
3
Electroporation of heterogeneous lipid membranes.
Biochim Biophys Acta. 2014 Mar;1838(3):814-21. doi: 10.1016/j.bbamem.2013.10.008. Epub 2013 Oct 18.
5
The importance of membrane defects-lessons from simulations.
Acc Chem Res. 2014 Aug 19;47(8):2244-51. doi: 10.1021/ar4002729. Epub 2014 Jun 3.
6
Effect of alcohol on the phase separation in model membranes.
Chem Phys Lipids. 2020 Nov;233:104986. doi: 10.1016/j.chemphyslip.2020.104986. Epub 2020 Oct 17.
7
Molecular Dynamics Simulations Reveal Leaflet Coupling in Compositionally Asymmetric Phase-Separated Lipid Membranes.
J Phys Chem B. 2019 May 9;123(18):3968-3975. doi: 10.1021/acs.jpcb.9b03488. Epub 2019 May 1.
8
Lipid organization of the plasma membrane.
J Am Chem Soc. 2014 Oct 15;136(41):14554-9. doi: 10.1021/ja507832e. Epub 2014 Oct 1.
9
Composition Fluctuations in Lipid Bilayers.
Biophys J. 2017 Dec 19;113(12):2750-2761. doi: 10.1016/j.bpj.2017.10.009.
10
Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.
Biophys J. 2004 May;86(5):2965-79. doi: 10.1016/S0006-3495(04)74347-7.

引用本文的文献

1
Hydrophobic mismatch drives self-organization of designer proteins into synthetic membranes.
Nat Commun. 2024 Apr 11;15(1):3162. doi: 10.1038/s41467-024-47163-1.
2
The impact of the glycan headgroup on the nanoscopic segregation of gangliosides.
Biophys J. 2021 Dec 21;120(24):5530-5543. doi: 10.1016/j.bpj.2021.11.017. Epub 2021 Nov 17.
3
Glycocalyx Curving the Membrane: Forces Emerging from the Cell Exterior.
Annu Rev Cell Dev Biol. 2021 Oct 6;37:257-283. doi: 10.1146/annurev-cellbio-120219-054401.
4
Computational Approaches to Explore Bacterial Toxin Entry into the Host Cell.
Toxins (Basel). 2021 Jun 28;13(7):449. doi: 10.3390/toxins13070449.

本文引用的文献

1
Bilayer Membranes with Frequent Flip-Flops Have Tensionless Leaflets.
Nano Lett. 2019 Aug 14;19(8):5011-5016. doi: 10.1021/acs.nanolett.9b01239. Epub 2019 Jul 5.
2
Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance.
Chem Rev. 2019 May 8;119(9):5607-5774. doi: 10.1021/acs.chemrev.8b00538. Epub 2019 Mar 12.
3
Computational Modeling of Realistic Cell Membranes.
Chem Rev. 2019 May 8;119(9):6184-6226. doi: 10.1021/acs.chemrev.8b00460. Epub 2019 Jan 9.
4
Capturing Phase Behavior of Ternary Lipid Mixtures with a Refined Martini Coarse-Grained Force Field.
J Chem Theory Comput. 2018 Nov 13;14(11):6050-6062. doi: 10.1021/acs.jctc.8b00496. Epub 2018 Oct 10.
5
Lipid-Protein Interactions Are Unique Fingerprints for Membrane Proteins.
ACS Cent Sci. 2018 Jun 27;4(6):709-717. doi: 10.1021/acscentsci.8b00143. Epub 2018 Jun 13.
6
The glycolipid GM1 reshapes asymmetric biomembranes and giant vesicles by curvature generation.
Proc Natl Acad Sci U S A. 2018 May 29;115(22):5756-5761. doi: 10.1073/pnas.1722320115. Epub 2018 May 14.
7
Computational Lipidomics of the Neuronal Plasma Membrane.
Biophys J. 2017 Nov 21;113(10):2271-2280. doi: 10.1016/j.bpj.2017.10.017. Epub 2017 Nov 4.
8
Long-chain GM1 gangliosides alter transmembrane domain registration through interdigitation.
Biochim Biophys Acta Biomembr. 2017 May;1859(5):870-878. doi: 10.1016/j.bbamem.2017.01.033. Epub 2017 Jan 28.
9
Influence of Ganglioside GM1 Concentration on Lipid Clustering and Membrane Properties and Curvature.
Biophys J. 2016 Nov 1;111(9):1987-1999. doi: 10.1016/j.bpj.2016.09.021.
10
GM1 Softens POPC Membranes and Induces the Formation of Micron-Sized Domains.
Biophys J. 2016 Nov 1;111(9):1935-1945. doi: 10.1016/j.bpj.2016.09.028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验