Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid 28040, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid 28040, Spain.
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid 28040, Spain; Genome Instability and DNA Repair Syndromes Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Barcelona 08193, Spain; Servicio de Genética e Instituto de Investigaciones Biomédicas del Hospital de Sant Pau, Barcelona 08025, Spain.
Cell Stem Cell. 2019 Nov 7;25(5):607-621.e7. doi: 10.1016/j.stem.2019.08.016. Epub 2019 Sep 19.
Non-homologous end-joining (NHEJ) is the preferred mechanism used by hematopoietic stem cells (HSCs) to repair double-stranded DNA breaks and is particularly increased in cells deficient in the Fanconi anemia (FA) pathway. Here, we show feasible correction of compromised functional phenotypes in hematopoietic cells from multiple FA complementation groups, including FA-A, FA-C, FA-D1, and FA-D2. NHEJ-mediated repair of targeted CRISPR-Cas9-induced DNA breaks generated compensatory insertions and deletions that restore the coding frame of the mutated gene. NHEJ-mediated editing efficacy was initially verified in FA lymphoblastic cell lines and then in primary FA patient-derived CD34 cells, which showed marked proliferative advantage and phenotypic correction both in vitro and after transplantation. Importantly, and in contrast to homologous directed repair, NHEJ efficiently targeted primitive human HSCs, indicating that NHEJ editing approaches may constitute a sound alternative for editing self-renewing human HSCs and consequently for treatment of FA and other monogenic diseases affecting the hematopoietic system.
非同源末端连接(NHEJ)是造血干细胞(HSCs)修复双链 DNA 断裂的首选机制,在缺乏范可尼贫血(FA)途径的细胞中尤其增加。在这里,我们显示了对多种 FA 互补组的造血细胞中受损功能表型的可行校正,包括 FA-A、FA-C、FA-D1 和 FA-D2。CRISPR-Cas9 诱导的靶向 DNA 断裂的 NHEJ 介导修复产生了补偿性插入和缺失,从而恢复了突变基因的编码框架。NHEJ 介导的编辑功效最初在 FA 淋巴母细胞系中得到验证,然后在原发性 FA 患者来源的 CD34 细胞中得到验证,这些细胞在体外和移植后均表现出明显的增殖优势和表型校正。重要的是,与同源定向修复相反,NHEJ 有效地靶向原始人类 HSCs,表明 NHEJ 编辑方法可能构成编辑自我更新的人类 HSCs 的合理替代方法,从而治疗 FA 和其他影响造血系统的单基因疾病。