Suppr超能文献

基于芳基氟硫酸盐的赖氨酸共价泛凋亡蛋白(IAP)拮抗剂细胞效力。

Aryl-fluorosulfate-based Lysine Covalent Pan-Inhibitors of Apoptosis Protein (IAP) Antagonists with Cellular Efficacy.

出版信息

J Med Chem. 2019 Oct 24;62(20):9188-9200. doi: 10.1021/acs.jmedchem.9b01108. Epub 2019 Oct 8.

Abstract

We have recently investigated the reactivity of aryl-fluorosulfates as warheads to form covalent adducts with Lys, Tyr, and His residues. However, the rate of reaction of aryl-fluorosulfates seemed relatively slow, putting into question their effectiveness to form covalent adducts in cell. Unlike the previously reported agents that targeted a relatively remote Lys residue with respect to the target's binding site, the current agents were designed to more directly juxtapose an aryl-fluorosulfate with a Lys residue that is located within the binding pocket of the BIR3 domain of X-linked inhibitor of apoptosis protein (XIAP). We found that such new agents can effectively and rapidly form a covalent adduct with XIAP-BIR3 in vitro and in cell, approaching the rate of reaction, cellular permeability, and stability that are similar to what attained by acrylamides when targeting Cys residues. Our studies further validate aryl-fluorosulfates as valuable Lys-targeting electrophiles, for the design of inhibitors of both enzymes and protein-protein interactions.

摘要

我们最近研究了芳基氟硫酸酯作为弹头与赖氨酸(Lys)、酪氨酸(Tyr)和组氨酸(His)残基形成共价加合物的反应性。然而,芳基氟硫酸酯的反应速率似乎相对较慢,这使得它们在细胞中形成共价加合物的有效性受到质疑。与之前报道的针对靶结合位点相对较远的赖氨酸残基的试剂不同,当前的试剂设计为更直接地将芳基氟硫酸酯与位于凋亡蛋白抑制因子(XIAP)的 BIR3 结构域结合口袋内的赖氨酸残基并置。我们发现,这些新型试剂可以有效地快速在体外和细胞内与 XIAP-BIR3 形成共价加合物,其反应速率、细胞通透性和稳定性与针对半胱氨酸残基的丙烯酰胺相似。我们的研究进一步验证了芳基氟硫酸酯作为有价值的赖氨酸靶向亲电试剂,可用于设计酶和蛋白质-蛋白质相互作用的抑制剂。

相似文献

1
Aryl-fluorosulfate-based Lysine Covalent Pan-Inhibitors of Apoptosis Protein (IAP) Antagonists with Cellular Efficacy.
J Med Chem. 2019 Oct 24;62(20):9188-9200. doi: 10.1021/acs.jmedchem.9b01108. Epub 2019 Oct 8.
2
Stability and Cell Permeability of Sulfonyl Fluorides in the Design of Lys-Covalent Antagonists of Protein-Protein Interactions.
ChemMedChem. 2020 Nov 18;15(22):2176-2184. doi: 10.1002/cmdc.202000355. Epub 2020 Oct 13.
3
Covalent Inhibitors of Protein-Protein Interactions Targeting Lysine, Tyrosine, or Histidine Residues.
J Med Chem. 2019 Jun 13;62(11):5616-5627. doi: 10.1021/acs.jmedchem.9b00561. Epub 2019 May 29.
4
Design of Potent pan-IAP and Lys-Covalent XIAP Selective Inhibitors Using a Thermodynamics Driven Approach.
J Med Chem. 2018 Jul 26;61(14):6350-6363. doi: 10.1021/acs.jmedchem.8b00810. Epub 2018 Jul 9.
5
Lysine Covalent Antagonists of Melanoma Inhibitors of Apoptosis Protein.
J Med Chem. 2021 Nov 11;64(21):16147-16158. doi: 10.1021/acs.jmedchem.1c01459. Epub 2021 Oct 27.
6
Characterization of a Potent and Orally Bioavailable Lys-Covalent Inhibitor of Apoptosis Protein (IAP) Antagonist.
J Med Chem. 2023 Jun 22;66(12):8159-8169. doi: 10.1021/acs.jmedchem.3c00467. Epub 2023 Jun 1.
8
Structure-based design and molecular profiling of Smac-mimetics selective for cellular IAPs.
FEBS J. 2018 Sep;285(17):3286-3298. doi: 10.1111/febs.14616. Epub 2018 Aug 16.

引用本文的文献

1
SuFEx-based antitubercular compound irreversibly inhibits Pks13.
Nature. 2025 Jul 30. doi: 10.1038/s41586-025-09286-3.
2
Advances in sulfonyl exchange chemical biology: expanding druggable target space.
Chem Sci. 2025 May 6;16(23):10119-10140. doi: 10.1039/d5sc02647d. eCollection 2025 Jun 11.
6
Covalent Targeting of Histidine Residues with Aryl Fluorosulfates: Application to Mcl-1 BH3 Mimetics.
J Med Chem. 2024 Nov 28;67(22):20214-20223. doi: 10.1021/acs.jmedchem.4c01541. Epub 2024 Nov 12.
7
Sulfur fluoride exchange.
Nat Rev Methods Primers. 2023;3. Epub 2023 Aug 3.
8
Histidine-Covalent Stapled Alpha-Helical Peptides Targeting hMcl-1.
J Med Chem. 2024 May 23;67(10):8172-8185. doi: 10.1021/acs.jmedchem.4c00277. Epub 2024 May 2.
9
A simple method for developing lysine targeted covalent protein reagents.
Nat Commun. 2023 Dec 1;14(1):7933. doi: 10.1038/s41467-023-42632-5.
10
Covalent targeting of non-cysteine residues in PI4KIIIβ.
RSC Chem Biol. 2023 Oct 17;4(12):1111-1122. doi: 10.1039/d3cb00142c. eCollection 2023 Nov 29.

本文引用的文献

1
Covalent Inhibitors of Protein-Protein Interactions Targeting Lysine, Tyrosine, or Histidine Residues.
J Med Chem. 2019 Jun 13;62(11):5616-5627. doi: 10.1021/acs.jmedchem.9b00561. Epub 2019 May 29.
2
Characterising covalent warhead reactivity.
Bioorg Med Chem. 2019 May 15;27(10):2066-2074. doi: 10.1016/j.bmc.2019.04.002. Epub 2019 Apr 3.
3
Assessing Lysine and Cysteine Reactivities for Designing Targeted Covalent Kinase Inhibitors.
J Am Chem Soc. 2019 Apr 24;141(16):6553-6560. doi: 10.1021/jacs.8b13248. Epub 2019 Apr 16.
4
Covalent binders in drug discovery.
Prog Med Chem. 2019;58:1-62. doi: 10.1016/bs.pmch.2018.12.002. Epub 2019 Mar 11.
5
Covalent Inhibition in Drug Discovery.
ChemMedChem. 2019 May 6;14(9):889-906. doi: 10.1002/cmdc.201900107. Epub 2019 Mar 26.
6
Inhibitor of Apoptosis Protein (IAP) Antagonists in Anticancer Agent Discovery: Current Status and Perspectives.
J Med Chem. 2019 Jun 27;62(12):5750-5772. doi: 10.1021/acs.jmedchem.8b01668. Epub 2019 Feb 1.
7
Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology.
J Med Chem. 2019 Jun 27;62(12):5673-5724. doi: 10.1021/acs.jmedchem.8b01153. Epub 2019 Jan 25.
8
Covalent vs. Non-Covalent Inhibition: Tackling Drug Resistance in EGFR - A Thorough Dynamic Perspective.
Chem Biodivers. 2019 Mar;16(3):e1800518. doi: 10.1002/cbdv.201800518. Epub 2019 Feb 5.
9
Covalent Inhibition in Drug Discovery: Filling the Void in Literature.
Curr Top Med Chem. 2018;18(13):1135-1145. doi: 10.2174/1568026618666180731161438.
10
Structure-based design and molecular profiling of Smac-mimetics selective for cellular IAPs.
FEBS J. 2018 Sep;285(17):3286-3298. doi: 10.1111/febs.14616. Epub 2018 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验