Department of Chemistry and Biochemistry , Kent State University , Kent , Ohio 44242 , United States.
Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), School of Laboratory Medicine , Chongqing Medical University , Chongqing , 400016 , People's Republic of China.
Anal Chem. 2019 Nov 5;91(21):13485-13493. doi: 10.1021/acs.analchem.9b02483. Epub 2019 Oct 9.
Multitasking is the pivotal feature in next-generation chemo- or bioanalyses. However, simultaneous analyses rarely exceed over three different tasks, which is ascribed to the limited space to accommodate analyzing units and the compromised signal-to-noise (S/N) level as the number of tasks increases. Here, by leveraging superior S/N of single-molecule techniques, we analyzed five microRNA biomarkers by spatially encoding miRNA recognition units with nanometers resolution in a DNA template, while decoding the analyte binding temporally in seconds. The hairpin stem is interspersed by internal loops to encode recognition units for miRNA. By mechanical unfolding of the hairpin, individual internal loops are sequentially interrogated for the binding of each miRNA. Using this so-called topochemical spatiotemporal analysis, we were able to achieve subpicomolar detection limits of miRNAs. We anticipate that this new single-molecule topochemical analysis can massively analyze single-molecule targets.
多重任务处理是下一代化学或生物分析的关键特征。然而,同时分析很少超过三个不同的任务,这是由于可用的分析单元空间有限,并且随着任务数量的增加,信号噪声比(S/N)水平降低。在这里,我们利用单分子技术的优异 S/N,通过在 DNA 模板中以纳米分辨率对 miRNA 识别单元进行空间编码,同时在几秒钟内对分析物的结合进行时间解码,从而分析了五种 microRNA 生物标志物。发夹茎由内部环隔开,以编码 miRNA 的识别单元。通过发夹的机械展开,逐个内部环依次检测每个 miRNA 的结合。通过这种所谓的拓扑时空分析,我们能够实现亚皮摩尔检测限的 miRNA。我们预计这种新的单分子拓扑化学分析可以大规模分析单分子靶标。