Suppr超能文献

绘制 barrels 皮层中表达 Parvalbumin 的 GABA 能神经元的全脑传入投射图谱揭示了局部和长程的环路模式。

Mapping Brain-Wide Afferent Inputs of Parvalbumin-Expressing GABAergic Neurons in Barrel Cortex Reveals Local and Long-Range Circuit Motifs.

机构信息

Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany.

Departments of Bioengineering and Psychiatry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.

出版信息

Cell Rep. 2019 Sep 24;28(13):3450-3461.e8. doi: 10.1016/j.celrep.2019.08.064.

Abstract

Parvalbumin (PV)-expressing GABAergic neurons are the largest class of inhibitory neocortical cells. We visualize brain-wide, monosynaptic inputs to PV neurons in mouse barrel cortex. We develop intersectional rabies virus tracing to specifically target GABAergic PV cells and exclude a small fraction of excitatory PV cells from our starter population. Local inputs are mainly from layer (L) IV and excitatory cells. A small number of inhibitory inputs originate from LI neurons, which connect to LII/III PV neurons. Long-range inputs originate mainly from other sensory cortices and the thalamus. In visual cortex, most transsynaptically labeled neurons are located in LIV, which contains a molecularly mixed population of projection neurons with putative functional similarity to LIII neurons. This study expands our knowledge of the brain-wide circuits in which PV neurons are embedded and introduces intersectional rabies virus tracing as an applicable tool to dissect the circuitry of more clearly defined cell types.

摘要

表达钙结合蛋白 Parvalbumin(PV)的 GABA 能神经元是皮质中最大的抑制性神经元群。我们可视化了在小鼠桶状皮层中 PV 神经元的全脑、单突触传入。我们开发了交叉性狂犬病毒追踪技术,特异性靶向 GABAergic PV 细胞,并将起始群体中的一小部分兴奋性 PV 细胞排除在外。局部输入主要来自于第 IV 层(L4)和兴奋性细胞。一小部分抑制性输入来源于 LI 神经元,它们连接到 LII/III PV 神经元。长程输入主要来源于其他感觉皮层和丘脑。在视觉皮层中,大多数跨突触标记的神经元位于 LIV 层,其中包含一群分子上混合的投射神经元,它们与 LIII 神经元具有潜在的功能相似性。这项研究扩展了我们对 PV 神经元所处的全脑回路的认识,并引入了交叉性狂犬病毒追踪作为一种可应用的工具,用于剖析更明确定义的细胞类型的回路。

相似文献

6
Whole-brain mapping of long-range inputs to the VIP-expressing inhibitory neurons in the primary motor cortex.
Front Neural Circuits. 2023 May 19;17:1093066. doi: 10.3389/fncir.2023.1093066. eCollection 2023.
8
GABAergic somatostatin-immunoreactive neurons in the amygdala project to the entorhinal cortex.
Neuroscience. 2015 Apr 2;290:227-42. doi: 10.1016/j.neuroscience.2015.01.028. Epub 2015 Jan 28.

引用本文的文献

2
Brain-wide 3D neuron detection and mapping with deep learning.
Neurophotonics. 2025 Apr;12(2):025012. doi: 10.1117/1.NPh.12.2.025012. Epub 2025 May 20.
4
A brain-wide map of descending inputs onto spinal V1 interneurons.
Neuron. 2025 Feb 19;113(4):524-538.e6. doi: 10.1016/j.neuron.2024.11.019. Epub 2024 Dec 23.
5
Fast-spiking parvalbumin-positive interneurons: new perspectives of treatment and future challenges in dementia.
Mol Psychiatry. 2025 Feb;30(2):693-704. doi: 10.1038/s41380-024-02756-6. Epub 2024 Dec 18.
7
Monosynaptic Inputs to Ventral Tegmental Area Glutamate and GABA Co-transmitting Neurons.
J Neurosci. 2024 Nov 13;44(46):e2184232024. doi: 10.1523/JNEUROSCI.2184-23.2024.
9
Genetic approaches to elucidating cortical and hippocampal GABAergic interneuron diversity.
Front Cell Neurosci. 2024 Jul 24;18:1414955. doi: 10.3389/fncel.2024.1414955. eCollection 2024.
10
Adaptation to photoperiod via dynamic neurotransmitter segregation.
Nature. 2024 Aug;632(8023):147-156. doi: 10.1038/s41586-024-07692-7. Epub 2024 Jul 17.

本文引用的文献

1
Classification of electrophysiological and morphological neuron types in the mouse visual cortex.
Nat Neurosci. 2019 Jul;22(7):1182-1195. doi: 10.1038/s41593-019-0417-0. Epub 2019 Jun 17.
3
A whole-brain atlas of monosynaptic input targeting four different cell types in the medial prefrontal cortex of the mouse.
Nat Neurosci. 2019 Apr;22(4):657-668. doi: 10.1038/s41593-019-0354-y. Epub 2019 Mar 18.
4
Differences in neurotropism and neurotoxicity among retrograde viral tracers.
Mol Neurodegener. 2019 Feb 8;14(1):8. doi: 10.1186/s13024-019-0308-6.
5
Intersectional monosynaptic tracing for dissecting subtype-specific organization of GABAergic interneuron inputs.
Nat Neurosci. 2019 Mar;22(3):492-502. doi: 10.1038/s41593-018-0322-y. Epub 2019 Jan 28.
6
Four Unique Interneuron Populations Reside in Neocortical Layer 1.
J Neurosci. 2019 Jan 2;39(1):125-139. doi: 10.1523/JNEUROSCI.1613-18.2018. Epub 2018 Nov 9.
7
Learning-Related Plasticity in Dendrite-Targeting Layer 1 Interneurons.
Neuron. 2018 Nov 7;100(3):684-699.e6. doi: 10.1016/j.neuron.2018.09.001. Epub 2018 Sep 27.
8
A Non-canonical Feedback Circuit for Rapid Interactions between Somatosensory Cortices.
Cell Rep. 2018 May 29;23(9):2718-2731.e6. doi: 10.1016/j.celrep.2018.04.115.
9
Genetic Dissection of Neural Circuits: A Decade of Progress.
Neuron. 2018 Apr 18;98(2):256-281. doi: 10.1016/j.neuron.2018.03.040.
10
A Guide to Creating and Testing New INTRSECT Constructs.
Curr Protoc Neurosci. 2017 Jul 5;80:4.39.1-4.39.24. doi: 10.1002/cpns.30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验