Suppr超能文献

通过着丝粒环来调节染色体分离。

The regulation of chromosome segregation via centromere loops.

机构信息

Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Crit Rev Biochem Mol Biol. 2019 Aug;54(4):352-370. doi: 10.1080/10409238.2019.1670130. Epub 2019 Oct 1.

Abstract

Biophysical studies of the yeast centromere have shown that the organization of the centromeric chromatin plays a crucial role in maintaining proper tension between sister kinetochores during mitosis. While centromeric chromatin has traditionally been considered a simple spring, recent work reveals the centromere as a multifaceted, tunable shock absorber. Centromeres can differ from other regions of the genome in their heterochromatin state, supercoiling state, and enrichment of structural maintenance of chromosomes (SMC) protein complexes. Each of these differences can be utilized to alter the effective stiffness of centromeric chromatin. In budding yeast, the SMC protein complexes condensin and cohesin stiffen chromatin by forming and cross-linking chromatin loops, respectively, into a fibrous structure resembling a bottlebrush. The high density of the loops compacts chromatin while spatially isolating the tension from spindle pulling forces to a subset of the chromatin. Paradoxically, the molecular crowding of chromatin via cohesin and condensin also causes an outward/poleward force. The structure allows the centromere to act as a shock absorber that buffers the variable forces generated by dynamic spindle microtubules. Based on the distribution of SMCs from bacteria to human and the conserved distance between sister kinetochores in a wide variety of organisms (0.4 to 1 micron), we propose that the bottlebrush mechanism is the foundational principle for centromere function in eukaryotes.

摘要

酵母着丝粒的生物物理研究表明,着丝粒染色质的组织在有丝分裂过程中维持姐妹动粒之间适当张力方面起着至关重要的作用。虽然传统上认为着丝粒染色质是一种简单的弹簧,但最近的研究揭示了着丝粒作为一个多方面、可调谐的减震器。着丝粒在异染色质状态、超螺旋状态和染色体结构维持(SMC)蛋白复合物的富集方面可以与基因组的其他区域不同。这些差异中的每一个都可以用来改变着丝粒染色质的有效刚度。在芽殖酵母中,SMC 蛋白复合物凝聚素和黏合素通过分别形成和交联染色质环,将染色质变成类似于瓶刷的纤维结构,从而使染色质变硬。环的高密度压缩了染色质,同时将张力从纺锤体拉力空间隔离到染色质的一小部分。矛盾的是,通过黏合素和凝聚素对染色质的分子拥挤也会产生向外/极向的力。该结构使着丝粒成为减震器,可以缓冲由动态纺锤体微管产生的可变力。基于从细菌到人类的 SMC 分布以及各种生物中姐妹动粒之间的保守距离(0.4 到 1 微米),我们提出瓶刷机制是真核生物着丝粒功能的基础原理。

相似文献

1
The regulation of chromosome segregation via centromere loops.
Crit Rev Biochem Mol Biol. 2019 Aug;54(4):352-370. doi: 10.1080/10409238.2019.1670130. Epub 2019 Oct 1.
2
Shaping centromeres to resist mitotic spindle forces.
J Cell Sci. 2022 Feb 15;135(4). doi: 10.1242/jcs.259532. Epub 2022 Feb 18.
3
Individual pericentromeres display coordinated motion and stretching in the yeast spindle.
J Cell Biol. 2013 Nov 11;203(3):407-16. doi: 10.1083/jcb.201307104. Epub 2013 Nov 4.
5
ChromoShake: a chromosome dynamics simulator reveals that chromatin loops stiffen centromeric chromatin.
Mol Biol Cell. 2016 Jan 1;27(1):153-66. doi: 10.1091/mbc.E15-08-0575. Epub 2015 Nov 4.
6
The spatial segregation of pericentric cohesin and condensin in the mitotic spindle.
Mol Biol Cell. 2013 Dec;24(24):3909-19. doi: 10.1091/mbc.E13-06-0325. Epub 2013 Oct 23.
7
Geometric partitioning of cohesin and condensin is a consequence of chromatin loops.
Mol Biol Cell. 2018 Nov 1;29(22):2737-2750. doi: 10.1091/mbc.E18-02-0131. Epub 2018 Sep 12.
9
Condensin regulates the stiffness of vertebrate centromeres.
Mol Biol Cell. 2009 May;20(9):2371-80. doi: 10.1091/mbc.e08-11-1127. Epub 2009 Mar 4.
10
Chromatin compaction by condensin I, intra-kinetochore stretch and tension, and anaphase onset, in collective spindle assembly checkpoint interaction.
J Phys Condens Matter. 2014 Apr 16;26(15):155102. doi: 10.1088/0953-8984/26/15/155102. Epub 2014 Mar 27.

引用本文的文献

1
The centromere bottlebrush requires a multi-microtubule attachment.
Mol Biol Cell. 2025 Jun 1;36(6):ar70. doi: 10.1091/mbc.E25-02-0050. Epub 2025 Apr 23.
2
Independence of centromeric and pericentromeric chromatin stability on CCAN components.
Mol Biol Cell. 2025 Apr 1;36(4):ar41. doi: 10.1091/mbc.E24-02-0066. Epub 2025 Feb 12.
3
High-resolution analysis of human centromeric chromatin.
Life Sci Alliance. 2025 Jan 23;8(4). doi: 10.26508/lsa.202402819. Print 2025 Apr.
4
Force generation and resistance in human mitosis.
Biophys Rev. 2024 Sep 28;16(5):551-562. doi: 10.1007/s12551-024-01235-0. eCollection 2024 Oct.
5
Vertebrate centromere architecture: from chromatin threads to functional structures.
Chromosoma. 2024 Jul;133(3):169-181. doi: 10.1007/s00412-024-00823-z. Epub 2024 Jun 10.
6
The power of weak, transient interactions across biology: A paradigm of emergent behavior.
Physica D. 2023 Nov 15;454. doi: 10.1016/j.physd.2023.133866. Epub 2023 Aug 4.
8
Misregulation of cell cycle-dependent methylation of budding yeast CENP-A contributes to chromosomal instability.
Mol Biol Cell. 2023 Sep 1;34(10):ar99. doi: 10.1091/mbc.E23-03-0108. Epub 2023 Jul 12.
10
A widespread inversion polymorphism conserved among Saccharomyces species is caused by recurrent homogenization of a sporulation gene family.
PLoS Genet. 2022 Nov 28;18(11):e1010525. doi: 10.1371/journal.pgen.1010525. eCollection 2022 Nov.

本文引用的文献

1
Phase Separation as a Melting Pot for DNA Repeats.
Trends Genet. 2019 Aug;35(8):589-600. doi: 10.1016/j.tig.2019.05.001. Epub 2019 May 31.
2
The stoichiometry of the outer kinetochore is modulated by microtubule-proximal regulatory factors.
J Cell Biol. 2019 Jul 1;218(7):2124-2135. doi: 10.1083/jcb.201810070. Epub 2019 May 22.
3
Centromere mechanical maturation during mammalian cell mitosis.
Nat Commun. 2019 Apr 15;10(1):1761. doi: 10.1038/s41467-019-09578-z.
4
PICH and TOP3A cooperate to induce positive DNA supercoiling.
Nat Struct Mol Biol. 2019 Apr;26(4):267-274. doi: 10.1038/s41594-019-0201-6. Epub 2019 Apr 1.
5
A Gradient in Metaphase Tension Leads to a Scaled Cellular Response in Mitosis.
Dev Cell. 2019 Apr 8;49(1):63-76.e10. doi: 10.1016/j.devcel.2019.01.018. Epub 2019 Feb 21.
6
Kinetochores, cohesin, and DNA breaks: Controlling meiotic recombination within pericentromeres.
Yeast. 2019 Mar;36(3):121-127. doi: 10.1002/yea.3366. Epub 2019 Feb 3.
7
8
Conformational flexibility of histone variant CENP-A is regulated by histone H4: A mechanism to stabilize soluble Cse4.
J Biol Chem. 2018 Dec 28;293(52):20273-20284. doi: 10.1074/jbc.RA118.004141. Epub 2018 Oct 31.
9
Genome-wide Identification of Structure-Forming Repeats as Principal Sites of Fork Collapse upon ATR Inhibition.
Mol Cell. 2018 Oct 18;72(2):222-238.e11. doi: 10.1016/j.molcel.2018.08.047. Epub 2018 Oct 4.
10
A tethered-inchworm model of SMC DNA translocation.
Nat Struct Mol Biol. 2018 Oct;25(10):906-910. doi: 10.1038/s41594-018-0135-4. Epub 2018 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验