Suppr超能文献

用于在广泛生物体中量化纳米材料生物累积的稳健且准确的实验方法策略。

Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms.

作者信息

Petersen Elijah J, Mortimer Monika, Burgess Robert M, Handy Richard, Hanna Shannon, Ho Kay T, Johnson Monique, Loureiro Susana, Selck Henriette, Scott-Fordsmand Janeck J, Spurgeon David, Unrine Jason, van den Brink Nico, Wang Ying, White Jason, Holden Patricia

机构信息

Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899.

Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States.

出版信息

Environ Sci Nano. 2019;6. doi: 10.1039/C8EN01378K.

Abstract

One of the key components for environmental risk assessment of engineered nanomaterials (ENMs) is data on bioaccumulation potential. Accurately measuring bioaccumulation can be critical for regulatory decision making regarding material hazard and risk, and for understanding the mechanism of toxicity. This perspective provides expert guidance for performing ENM bioaccumulation measurements across a broad range of test organisms and species. To accomplish this aim, we critically evaluated ENM bioaccumulation within three categories of organisms: single-celled species, multicellular species excluding plants, and multicellular plants. For aqueous exposures of suspended single-celled and small multicellular species, it is critical to perform a robust procedure to separate suspended ENMs and small organisms to avoid overestimating bioaccumulation. For many multicellular organisms, it is essential to differentiate between the ENMs adsorbed to external surfaces or in the digestive tract and the amount absorbed across epithelial tissues. For multicellular plants, key considerations include how exposure route and the role of the rhizosphere may affect the quantitative measurement of uptake, and that the efficiency of washing procedures to remove loosely attached ENMs to the roots is not well understood. Within each organism category, case studies are provided to illustrate key methodological considerations for conducting robust bioaccumulation experiments for different species within each major group. The full scope of ENM bioaccumulation measurements and interpretations are discussed including conducting the organism exposure, separating organisms from the ENMs in the test media after exposure, analytical methods to quantify ENMs in the tissues or cells, and modeling the ENM bioaccumulation results. One key finding to improve bioaccumulation measurements was the critical need for further analytical method development to identify and quantify ENMs in complex matrices. Overall, the discussion, suggestions, and case studies described herein will help improve the robustness of ENM bioaccumulation studies.

摘要

工程纳米材料(ENM)环境风险评估的关键要素之一是生物累积潜力的数据。准确测量生物累积对于有关材料危害和风险的监管决策以及理解毒性机制可能至关重要。本观点为在广泛的测试生物和物种中进行ENM生物累积测量提供了专家指导。为实现这一目标,我们严格评估了三类生物体内的ENM生物累积情况:单细胞物种、不包括植物的多细胞物种以及多细胞植物。对于悬浮的单细胞和小型多细胞物种的水相暴露,执行一个稳健的程序来分离悬浮的ENM和小型生物以避免高估生物累积至关重要。对于许多多细胞生物,区分吸附在外部表面或消化道中的ENM与跨上皮组织吸收的量至关重要。对于多细胞植物,关键考虑因素包括暴露途径和根际的作用如何影响吸收的定量测量,以及去除松散附着在根部的ENM的洗涤程序效率尚未得到很好的理解。在每个生物类别中,都提供了案例研究以说明针对每个主要组内不同物种进行稳健生物累积实验的关键方法学考虑因素。讨论了ENM生物累积测量和解释的全部范围,包括进行生物体暴露实验、暴露后从测试介质中的ENM分离生物体、量化组织或细胞中ENM的分析方法以及对ENM生物累积结果进行建模。改进生物累积测量的一个关键发现是迫切需要进一步开发分析方法以识别和量化复杂基质中的ENM。总体而言,本文所述的讨论、建议和案例研究将有助于提高ENM生物累积研究的稳健性。

相似文献

2
Meta-analysis of Bioaccumulation Data for Nondissolvable Engineered Nanomaterials in Freshwater Aquatic Organisms.
Environ Toxicol Chem. 2022 May;41(5):1202-1214. doi: 10.1002/etc.5312. Epub 2022 Mar 30.
4
Nanomaterials in Plants: A Review of Hazard and Applications in the Agri-Food Sector.
Nanomaterials (Basel). 2019 Jul 30;9(8):1094. doi: 10.3390/nano9081094.
5
In silico analysis of nanomaterials hazard and risk.
Acc Chem Res. 2013 Mar 19;46(3):802-12. doi: 10.1021/ar300049e. Epub 2012 Nov 8.
6
Searching for global descriptors of engineered nanomaterial fate and transport in the environment.
Acc Chem Res. 2013 Mar 19;46(3):844-53. doi: 10.1021/ar300030n. Epub 2012 Sep 5.
7
Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review.
Nanotoxicology. 2019 Apr;13(3):392-428. doi: 10.1080/17435390.2018.1530391. Epub 2019 Feb 14.
8
Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements.
Environ Sci Technol. 2014 Apr 15;48(8):4226-46. doi: 10.1021/es4052999. Epub 2014 Mar 27.
9
Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench.
Environ Toxicol Chem. 2012 Jan;31(1):15-31. doi: 10.1002/etc.706. Epub 2011 Nov 18.
10
Physicochemical properties determine nanomaterial cellular uptake, transport, and fate.
Acc Chem Res. 2013 Mar 19;46(3):622-31. doi: 10.1021/ar300031y. Epub 2012 Aug 14.

引用本文的文献

1
NanoBioAccumulate: Modelling the uptake and bioaccumulation of nanomaterials in soil and aquatic invertebrates via the Enalos DIAGONAL Cloud Platform.
Comput Struct Biotechnol J. 2024 Oct 17;25:243-255. doi: 10.1016/j.csbj.2024.09.028. eCollection 2024 Dec.
2
Recent advances in nanoantibiotics against multidrug-resistant bacteria.
Nanoscale Adv. 2023 Oct 5;5(23):6278-6317. doi: 10.1039/d3na00530e. eCollection 2023 Nov 21.
4
Potential Artifacts and Control Experiments in Toxicity Tests of Nanoplastic and Microplastic Particles.
Environ Sci Technol. 2022 Nov 15;56(22):15192-15206. doi: 10.1021/acs.est.2c04929. Epub 2022 Oct 14.
5
toxicity of carbon nanotubes: a systematic review.
RSC Adv. 2022 May 31;12(25):16235-16256. doi: 10.1039/d2ra02519a. eCollection 2022 May 23.
8
Meta-analysis of Bioaccumulation Data for Nondissolvable Engineered Nanomaterials in Freshwater Aquatic Organisms.
Environ Toxicol Chem. 2022 May;41(5):1202-1214. doi: 10.1002/etc.5312. Epub 2022 Mar 30.
9
U.S. Federal Agency interests and key considerations for new approach methodologies for nanomaterials.
ALTEX. 2022;39(2):183–206. doi: 10.14573/altex.2105041. Epub 2021 Dec 3.

本文引用的文献

2
Effects of Copper Oxide Nanoparticles on Paddy Soil Properties and Components.
Nanomaterials (Basel). 2018 Oct 16;8(10):839. doi: 10.3390/nano8100839.
3
Interference of engineered nanomaterials in flow cytometry: A case study.
Colloids Surf B Biointerfaces. 2018 Dec 1;172:635-645. doi: 10.1016/j.colsurfb.2018.09.021. Epub 2018 Sep 12.
4
Efficient electrochemical degradation of multiwall carbon nanotubes.
J Hazard Mater. 2018 Jul 15;354:275-282. doi: 10.1016/j.jhazmat.2018.04.065. Epub 2018 Apr 26.
5
6
Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review.
Environ Toxicol Chem. 2018 Aug;37(8):2029-2063. doi: 10.1002/etc.4147. Epub 2018 Jul 16.
9
Detection and Quantification of Graphene-Family Nanomaterials in the Environment.
Environ Sci Technol. 2018 Apr 17;52(8):4491-4513. doi: 10.1021/acs.est.7b04938. Epub 2018 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验