Department Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China.
Int J Environ Health Res. 2021 Sep;31(6):595-606. doi: 10.1080/09603123.2019.1677862. Epub 2019 Oct 17.
The main aim of this study was to explore the spatial-temporal patterns of cause-specific CVD admission in Beijing using retrospective SaTScan analysis.
A spatial-temporal analysis was conducted at the district level based on the rates of total and cause-specific CVD admissions, including coronary heart disease (CHD), atrial fibrillation (AF), and heart failure (HF) from 2013 to 2017. We used joint point regression, Global Moran's I and Anselin's local Moran's I, together with Kulldorff's scan statistic.
Hospital admission trend decreased during the study period. Admission rates followed a spatially clustered pattern with differences occurring between cause-specific CVDs. Clusters were mainly identified in ecological preservation areas, with a more likely cluster found in Daxing, Fangshan, Xicheng district for total CVD, CHD, AF and HF, respectively.
Hospital admission of cause-specific CVD showed spatial clustered pattern, especially in ecological preservation areas.
本研究旨在利用回顾性 SaTScan 分析探讨北京特定原因心血管疾病入院的时空模式。
基于 2013 年至 2017 年总心血管疾病和特定原因心血管疾病(包括冠心病、心房颤动和心力衰竭)入院率,在区县级水平进行时空分析。我们使用联合点回归、全局 Moran's I 和 Anselin 的局部 Moran's I 以及 Kulldorff 的扫描统计来进行分析。
研究期间,医院入院趋势呈下降趋势。入院率呈现出空间聚类模式,不同的原因导致了心血管疾病的差异。聚类主要发生在生态保护区,大兴、房山、西城等区分别发现了更可能的总心血管疾病、冠心病、心房颤动和心力衰竭聚类。
特定原因心血管疾病的住院入院率呈现出空间聚类模式,特别是在生态保护区。