Suppr超能文献

2-FDG PET 能否准确反映体内葡萄糖的定量利用?

Does 2-FDG PET Accurately Reflect Quantitative In Vivo Glucose Utilization?

机构信息

Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, California

Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, California.

出版信息

J Nucl Med. 2020 Jun;61(6):931-937. doi: 10.2967/jnumed.119.237446. Epub 2019 Nov 1.

Abstract

2-Deoxy-2-F-fluoro-d-glucose (2-FDG) with PET is undeniably useful in the clinic, being able, among other uses, to monitor change over time using the 2-FDG SUV metric. This report suggests some potentially serious caveats for this and related roles for 2-FDG PET. Most critical is the assumption that there is an exact proportionality between glucose metabolism and 2-FDG metabolism, called the lumped constant, or LC. This report describes that LC is not constant for a specific tissue and may be variable before and after disease treatment. The purpose of this work is not to deny the clinical value of 2-FDG PET; it is a reminder that when one extends the use of an appropriately qualified imaging method, new observations may arise and further validation would be necessary. The current understanding of glucose-based energetics in vivo is based on the quantification of glucose metabolic rates with 2-FDG PET, a method that permits the noninvasive assessment of various human disorders. However, 2-FDG is a good substrate only for facilitated-glucose transporters (GLUTs), not for sodium-dependent glucose cotransporters (SGLTs), which have recently been shown to be distributed in multiple human tissues. Thus, the GLUT-mediated in vivo glucose utilization measured by 2-FDG PET would be masked to the potentially substantial role of functional SGLTs in glucose transport and use. Therefore, under these circumstances, the 2-FDG LC used to quantify in vivo glucose utilization should not be expected to remain constant. 2-FDG LC variations have been especially significant in tumors, particularly at different stages of cancer development, affecting the accuracy of quantitative glucose measures and potentially limiting the prognostic value of 2-FDG, as well as its accuracy in monitoring treatments. SGLT-mediated glucose transport can be estimated using α-methyl-4-deoxy-4-F-fluoro-d-glucopyranoside (Me-4FDG). Using both 2-FDG and Me-4FDG should provide a more complete picture of glucose utilization via both GLUT and SGLT transporters in health and disease states. Given the widespread use of 2-FDG PET to infer glucose metabolism, it is relevant to appreciate the potential limitations of 2-FDG as a surrogate for glucose metabolic rate and the potential reasons for variability in LC. Even when the readout for the 2-FDG PET study is only an SUV parameter, variability in LC is important, particularly if it changes over the course of disease progression (e.g., an evolving tumor).

摘要

2-脱氧-2-F-氟-D-葡萄糖(2-FDG)与 PET 结合在临床上无疑是有用的,它能够通过 2-FDG SUV 指标来监测随时间的变化。本报告提出了一些与 2-FDG PET 相关的潜在严重警告。最重要的是,葡萄糖代谢与 2-FDG 代谢之间存在精确比例的假设,称为聚集常数或 LC。本报告描述了 LC 对于特定组织不是恒定的,并且在疾病治疗前后可能是可变的。本工作的目的不是否认 2-FDG PET 的临床价值;这只是提醒人们,当人们扩展使用适当合格的成像方法时,可能会出现新的观察结果,并且需要进一步验证。目前对体内葡萄糖能量代谢的理解是基于用 2-FDG PET 定量葡萄糖代谢率,该方法允许对各种人类疾病进行非侵入性评估。然而,2-FDG 只是促进型葡萄糖转运体(GLUTs)的良好底物,而不是钠依赖性葡萄糖共转运体(SGLTs)的底物,最近已经表明 SGLTs 分布在多种人类组织中。因此,通过 2-FDG PET 测量的体内 GLUT 介导的葡萄糖利用将被屏蔽掉功能性 SGLTs 在葡萄糖转运和利用中的潜在重要作用。因此,在这种情况下,用于量化体内葡萄糖利用的 2-FDG LC 不应期望保持不变。2-FDG LC 的变化在肿瘤中尤其明显,特别是在癌症发展的不同阶段,这会影响定量葡萄糖测量的准确性,并可能限制 2-FDG 的预后价值,以及其在监测治疗中的准确性。使用α-甲基-4-脱氧-4-F-氟-D-吡喃葡萄糖苷(Me-4FDG)可以估计 SGLT 介导的葡萄糖转运。使用 2-FDG 和 Me-4FDG 应该可以更全面地了解健康和疾病状态下 GLUT 和 SGLT 转运体通过葡萄糖的利用。鉴于 2-FDG PET 被广泛用于推断葡萄糖代谢,了解 2-FDG 作为葡萄糖代谢率替代物的潜在局限性以及 LC 变化的潜在原因是很重要的。即使 2-FDG PET 研究的读出结果仅是 SUV 参数,LC 的变异性也很重要,特别是如果它在疾病进展过程中发生变化(例如,正在发展的肿瘤)。

相似文献

1
Does 2-FDG PET Accurately Reflect Quantitative In Vivo Glucose Utilization?
J Nucl Med. 2020 Jun;61(6):931-937. doi: 10.2967/jnumed.119.237446. Epub 2019 Nov 1.
2
Revisiting the physiological roles of SGLTs and GLUTs using positron emission tomography in mice.
J Physiol. 2016 Aug 1;594(15):4425-38. doi: 10.1113/JP271904. Epub 2016 May 10.
3
Functional expression of SGLTs in rat brain.
Am J Physiol Cell Physiol. 2010 Dec;299(6):C1277-84. doi: 10.1152/ajpcell.00296.2010. Epub 2010 Sep 8.
4
In Vivo Functional Assessment of Sodium-Glucose Cotransporters (SGLTs) Using [F]Me4FDG PET in Rats.
Mol Imaging. 2022 Jun 21;2022:4635171. doi: 10.1155/2022/4635171. eCollection 2022.
5
Intestinal absorption of glucose in mice as determined by positron emission tomography.
J Physiol. 2018 Jul;596(13):2473-2489. doi: 10.1113/JP275934. Epub 2018 Jun 5.
6
Sodium-glucose cotransporters: new targets of cancer therapy?
Arh Hig Rada Toksikol. 2018 Dec 1;69(4):278-285. doi: 10.2478/aiht-2018-69-3204.
8
Positron emission tomography of sodium glucose cotransport activity in high grade astrocytomas.
J Neurooncol. 2018 Jul;138(3):557-569. doi: 10.1007/s11060-018-2823-7. Epub 2018 Mar 10.
9
Methodologic Considerations for Quantitative 18F-FDG PET/CT Studies of Hepatic Glucose Metabolism in Healthy Subjects.
J Nucl Med. 2015 Sep;56(9):1366-71. doi: 10.2967/jnumed.115.154211. Epub 2015 Jul 9.

引用本文的文献

1
Resistance to neoadjuvant chemotherapy in breast cancers: a metabolic perspective.
J Exp Clin Cancer Res. 2025 Aug 11;44(1):234. doi: 10.1186/s13046-025-03500-w.
2
Imaging the uptake and metabolism of glutamine in prostate tumor models using CEST MRI.
Npj Imaging. 2025 Aug 1;3(1):34. doi: 10.1038/s44303-025-00100-3.
3
Imaging cancer metabolism using magnetic resonance.
Npj Imaging. 2024 Jan 11;2(1):1. doi: 10.1038/s44303-023-00004-0.
7
Metabolic Energy is Stored in a Homeostatic Trans-Membrane Water Barochemical Gradient.
J Membr Biol. 2025 Apr;258(2):135-160. doi: 10.1007/s00232-024-00332-1. Epub 2025 Feb 26.
9
PET imaging of sodium-glucose cotransporters (SGLTs): Unveiling metabolic dynamics in diabetes and oncology.
Mol Metab. 2024 Dec;90:102055. doi: 10.1016/j.molmet.2024.102055. Epub 2024 Oct 23.

本文引用的文献

1
Sodium-glucose transporter 2 is a diagnostic and therapeutic target for early-stage lung adenocarcinoma.
Sci Transl Med. 2018 Nov 14;10(467). doi: 10.1126/scitranslmed.aat5933.
2
Positron emission tomography of sodium glucose cotransport activity in high grade astrocytomas.
J Neurooncol. 2018 Jul;138(3):557-569. doi: 10.1007/s11060-018-2823-7. Epub 2018 Mar 10.
3
Functional expression of sodium-glucose transporters in cancer.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):E4111-9. doi: 10.1073/pnas.1511698112. Epub 2015 Jul 13.
4
Glucose transport families SLC5 and SLC50.
Mol Aspects Med. 2013 Apr-Jun;34(2-3):183-96. doi: 10.1016/j.mam.2012.11.002.
5
Regional distribution of SGLT activity in rat brain in vivo.
Am J Physiol Cell Physiol. 2013 Feb 1;304(3):C240-7. doi: 10.1152/ajpcell.00317.2012. Epub 2012 Nov 14.
6
Aerobic glycolysis: meeting the metabolic requirements of cell proliferation.
Annu Rev Cell Dev Biol. 2011;27:441-64. doi: 10.1146/annurev-cellbio-092910-154237.
7
Biology of human sodium glucose transporters.
Physiol Rev. 2011 Apr;91(2):733-94. doi: 10.1152/physrev.00055.2009.
8
Functional expression of SGLTs in rat brain.
Am J Physiol Cell Physiol. 2010 Dec;299(6):C1277-84. doi: 10.1152/ajpcell.00296.2010. Epub 2010 Sep 8.
9
From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors.
J Nucl Med. 2009 May;50 Suppl 1(Suppl 1):122S-50S. doi: 10.2967/jnumed.108.057307.
10
How drugs interact with transporters: SGLT1 as a model.
J Membr Biol. 2008 May;223(2):87-106. doi: 10.1007/s00232-008-9116-6. Epub 2008 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验