Suppr超能文献

再生眼科学中的纳米技术。

Nanotechnology in regenerative ophthalmology.

机构信息

Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.

Department of Comparative Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.

出版信息

Adv Drug Deliv Rev. 2019 Aug;148:290-307. doi: 10.1016/j.addr.2019.10.006. Epub 2019 Nov 7.

Abstract

In recent years, regenerative medicine is gaining momentum and is giving hopes for restoring function of diseased, damaged, and aged tissues and organs and nanotechnology is serving as a catalyst. In the ophthalmology field, various types of allogenic and autologous stem cells have been investigated to treat some ocular diseases due to age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and corneal and lens traumas. Nanomaterials have been utilized directly as nanoscaffolds for these stem cells to promote their adhesion, proliferation and differentiation or indirectly as vectors for various genes, tissue growth factors, cytokines and immunosuppressants to facilitate cell reprogramming or ocular tissue regeneration. In this review, we reviewed various nanomaterials used for retina, cornea, and lens regenerations, and discussed the current status and future perspectives of nanotechnology in tracking cells in the eye and personalized regenerative ophthalmology. The purpose of this review is to provide comprehensive and timely insights on the emerging field of nanotechnology for ocular tissue engineering and regeneration.

摘要

近年来,再生医学正在兴起,为恢复患病、受损和衰老组织和器官的功能带来了希望,而纳米技术则起到了催化剂的作用。在眼科领域,由于年龄相关性黄斑变性、青光眼、视网膜色素变性、糖尿病性视网膜病变以及角膜和晶状体创伤等原因,已经研究了各种同种异体和自体干细胞来治疗一些眼部疾病。纳米材料被直接用作这些干细胞的纳米支架,以促进它们的黏附、增殖和分化,或者间接地用作各种基因、组织生长因子、细胞因子和免疫抑制剂的载体,以促进细胞重编程或眼部组织再生。在这篇综述中,我们回顾了用于视网膜、角膜和晶状体再生的各种纳米材料,并讨论了纳米技术在眼部细胞追踪和个性化再生眼科方面的现状和未来前景。本文综述的目的是提供有关眼组织工程和再生这一新兴纳米技术领域的全面和及时的见解。

相似文献

1
Nanotechnology in regenerative ophthalmology.
Adv Drug Deliv Rev. 2019 Aug;148:290-307. doi: 10.1016/j.addr.2019.10.006. Epub 2019 Nov 7.
2
Nano-Biomaterials for Retinal Regeneration.
Nanomaterials (Basel). 2021 Jul 22;11(8):1880. doi: 10.3390/nano11081880.
3
Carbon nanomaterials for nerve tissue stimulation and regeneration.
Mater Sci Eng C Mater Biol Appl. 2014 Jan 1;34:35-49. doi: 10.1016/j.msec.2013.09.038. Epub 2013 Oct 8.
4
Nano-material utilization in stem cells for regenerative medicine.
Biomed Tech (Berl). 2022 Sep 14;67(6):429-442. doi: 10.1515/bmt-2022-0123. Print 2022 Dec 16.
5
Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans.
J Cell Mol Med. 2012 Sep;16(9):1991-2000. doi: 10.1111/j.1582-4934.2012.01534.x.
6
Nanotechnology-Based Approaches for Guiding Neural Regeneration.
Acc Chem Res. 2016 Jan 19;49(1):17-26. doi: 10.1021/acs.accounts.5b00345. Epub 2015 Dec 14.
7
Neuronanotechnology for brain regeneration.
Adv Drug Deliv Rev. 2019 Aug;148:3-18. doi: 10.1016/j.addr.2019.04.004. Epub 2019 Apr 17.
8
Extracellular, stem cells and regenerative ophthalmology.
J Glaucoma. 2014 Oct-Nov;23(8 Suppl 1):S30-3. doi: 10.1097/IJG.0000000000000112.
10
Recreating composition, structure, functionalities of tissues at nanoscale for regenerative medicine.
Regen Med. 2016 Dec;11(8):849-858. doi: 10.2217/rme-2016-0120. Epub 2016 Nov 25.

引用本文的文献

1
Advances in the study of single-walled carbon nanotubes in ophthalmology.
Hum Cell. 2025 Mar 24;38(3):76. doi: 10.1007/s13577-025-01204-z.
2
Tissue engineering strategies for ocular regeneration; from bench to the bedside.
Heliyon. 2024 Oct 15;10(20):e39398. doi: 10.1016/j.heliyon.2024.e39398. eCollection 2024 Oct 30.
3
Revolutionizing medicine: recent developments and future prospects in stem-cell therapy.
Int J Surg. 2024 Dec 1;110(12):8002-8024. doi: 10.1097/JS9.0000000000002109.
4
Regeneration of the Retina Using Pluripotent Stem Cells: A Comprehensive Review.
Cureus. 2024 Feb 2;16(2):e53479. doi: 10.7759/cureus.53479. eCollection 2024 Feb.
5
Light-responsive polymeric nanoparticles for retinal drug delivery: design cues, challenges and future perspectives.
Heliyon. 2024 Feb 18;10(5):e26616. doi: 10.1016/j.heliyon.2024.e26616. eCollection 2024 Mar 15.
6
The Role of Retinal Ganglion Cell Structure and Function in Glaucoma.
Cells. 2023 Dec 8;12(24):2797. doi: 10.3390/cells12242797.
7
Nanotechnology in Retinal Disease: Current Concepts and Future Directions.
J Ocul Pharmacol Ther. 2024 Jan-Feb;40(1):3-12. doi: 10.1089/jop.2023.0083. Epub 2023 Dec 5.
8
Annexin A1 in the nervous and ocular systems.
Neural Regen Res. 2024 Mar;19(3):591-597. doi: 10.4103/1673-5374.380882.
9
Next-generation nanomaterials: advancing ocular anti-inflammatory drug therapy.
J Nanobiotechnology. 2023 Aug 19;21(1):282. doi: 10.1186/s12951-023-01974-4.
10
Gold Nanoparticles Encapsulated Resveratrol as an Anti-Aging Agent to Delay Cataract Development.
Pharmaceuticals (Basel). 2022 Dec 25;16(1):26. doi: 10.3390/ph16010026.

本文引用的文献

1
Recent review of the effect of nanomaterials on stem cells.
RSC Adv. 2018 May 15;8(32):17656-17676. doi: 10.1039/c8ra02424c. eCollection 2018 May 14.
2
Self-Assembly of an Antiangiogenic Nanofibrous Peptide Hydrogel.
ACS Appl Bio Mater. 2018 Sep 17;1(3):865-870. doi: 10.1021/acsabm.8b00283. Epub 2018 Sep 6.
3
Amine-Functionalized Electrically Conductive Core-Sheath MEH-PPV:PCL Electrospun Nanofibers for Enhanced Cell-Biomaterial Interactions.
ACS Biomater Sci Eng. 2018 Sep 10;4(9):3327-3346. doi: 10.1021/acsbiomaterials.8b00624. Epub 2018 Aug 29.
4
Template Curvature Influences Cell Alignment to Create Improved Human Corneal Tissue Equivalents.
Adv Biosyst. 2017 Dec;1(12):e1700135. doi: 10.1002/adbi.201700135. Epub 2017 Oct 20.
7
Design strategies for programmable oligonucleotide nanotherapeutics.
Drug Discov Today. 2020 Jan;25(1):73-88. doi: 10.1016/j.drudis.2019.09.006. Epub 2019 Sep 13.
8
Gene therapies in ophthalmic disease.
Nat Rev Drug Discov. 2019 Jun;18(6):415-416. doi: 10.1038/d41573-018-00016-1.
9
A microscale optical implant for continuous monitoring of intraocular pressure.
Microsyst Nanoeng. 2017 Dec 18;3:17057. doi: 10.1038/micronano.2017.57. eCollection 2017.
10
Highly polydisperse keratin rich nanofibers: Scaffold design and in vitro characterization.
J Biomed Mater Res A. 2019 Aug;107(8):1803-1813. doi: 10.1002/jbm.a.36699. Epub 2019 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验