Suppr超能文献

一种新的用于研究创伤性脑损伤后内源性神经干细胞和祖细胞的小鼠模型。

A novel mouse model for the study of endogenous neural stem and progenitor cells after traumatic brain injury.

机构信息

Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America.

Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America.

出版信息

Exp Neurol. 2020 Mar;325:113119. doi: 10.1016/j.expneurol.2019.113119. Epub 2019 Nov 18.

Abstract

Traumatic brain injury (TBI) is a leading cause of death and disability in the US. Neural stem/progenitor cells (NSPCs) persist in the adult brain and represent a potential cell source for tissue regeneration and wound healing after injury. The Notch signaling pathway is critical for embryonic development and adult brain injury response. However, the specific role of Notch signaling in the injured brain is not well characterized. Our previous study has established a Notch1CR2-GFP reporter mouse line in which the Notch1CR2 enhancer directs GFP expression in NSPCs and their progeny. In this study, we performed closed head injury (CHI) in the Notch1CR2-GFP mice to study the response of injury-activated NSPCs. We show that CHI induces neuroinflammation, cell death, and the expression of typical TBI markers (e.g., ApoE, Il1b, and Tau), validating the animal model. In addition, CHI induces cell proliferation in GFP+ cells expressing NSPC markers, e.g., Notch1 and Nestin. A significant higher percentage of GFP+ astrocytes and GABAergic neurons was observed in the injured brain, with no significant change in oligodendrocyte lineage between the CHI and sham animal groups. Since injury is known to activate astrogliosis, our results suggest that injury-induced GFP+ NSPCs preferentially differentiate into GABAergic neurons. Our study establishes that Notch1CR2-GFP transgenic mouse is a useful tool for the study of NSPC behavior in vivo after TBI. Unveiling the potential of NSPCs response to TBI (e.g., proliferation and differentiation) will identify new therapeutic strategy for the treatment of brain trauma.

摘要

创伤性脑损伤(TBI)是美国导致死亡和残疾的主要原因。神经干/祖细胞(NSPCs)在成年大脑中持续存在,代表了受伤后组织再生和伤口愈合的潜在细胞来源。Notch 信号通路对于胚胎发育和成年脑损伤反应至关重要。然而,Notch 信号在受损大脑中的具体作用尚未得到很好的描述。我们之前的研究建立了 Notch1CR2-GFP 报告小鼠品系,其中 Notch1CR2 增强子指导 NSPCs 及其祖细胞中的 GFP 表达。在这项研究中,我们对 Notch1CR2-GFP 小鼠进行了闭合性颅脑损伤(CHI),以研究损伤激活的 NSPCs 的反应。我们表明,CHI 诱导神经炎症、细胞死亡和典型 TBI 标志物(例如 ApoE、Il1b 和 Tau)的表达,验证了动物模型。此外,CHI 诱导表达 NSPC 标志物(例如 Notch1 和 Nestin)的 GFP+细胞增殖。在受伤大脑中观察到 GFP+星形胶质细胞和 GABA 能神经元的比例显著增加,而 CHI 和假手术动物组之间少突胶质细胞谱系没有明显变化。由于损伤已知会激活星形胶质细胞增生,我们的结果表明,损伤诱导的 GFP+NSPC 优先分化为 GABA 能神经元。我们的研究表明,Notch1CR2-GFP 转基因小鼠是研究 TBI 后体内 NSPC 行为的有用工具。揭示 NSPC 对 TBI 的反应潜力(例如增殖和分化)将为脑创伤的治疗确定新的治疗策略。

相似文献

1
A novel mouse model for the study of endogenous neural stem and progenitor cells after traumatic brain injury.
Exp Neurol. 2020 Mar;325:113119. doi: 10.1016/j.expneurol.2019.113119. Epub 2019 Nov 18.
2
Apolipoprotein E Regulates Injury-Induced Activation of Hippocampal Neural Stem and Progenitor Cells.
J Neurotrauma. 2016 Feb 15;33(4):362-74. doi: 10.1089/neu.2014.3860. Epub 2015 Jun 11.
4
Interferon gamma protects neonatal neural stem/progenitor cells during measles virus infection of the brain.
J Neuroinflammation. 2016 May 13;13(1):107. doi: 10.1186/s12974-016-0571-1.
5
Establishment of a Reproducible Ischemic Stroke Model in Nestin-GFP Mice with High Survival Rates.
Int J Mol Sci. 2021 Nov 30;22(23):12997. doi: 10.3390/ijms222312997.
10
Endogenous neural stem/progenitor cells stabilize the cortical microenvironment after traumatic brain injury.
J Neurotrauma. 2015 Jun 1;32(11):753-64. doi: 10.1089/neu.2014.3390. Epub 2015 Feb 27.

引用本文的文献

1
Microglial polarization pathways and therapeutic drugs targeting activated microglia in traumatic brain injury.
Neural Regen Res. 2024 Dec 7;21(1):39-56. doi: 10.4103/NRR.NRR-D-24-00810.
2
Diversity of Adult Neural Stem and Progenitor Cells in Physiology and Disease.
Cells. 2021 Aug 10;10(8):2045. doi: 10.3390/cells10082045.
3
Gsx1 promotes locomotor functional recovery after spinal cord injury.
Mol Ther. 2021 Aug 4;29(8):2469-2482. doi: 10.1016/j.ymthe.2021.04.027. Epub 2021 Apr 23.
4
Sonic Hedgehog Signaling Promotes Peri-Lesion Cell Proliferation and Functional Improvement after Cortical Contusion Injury.
Neurotrauma Rep. 2021 Jan 22;2(1):27-38. doi: 10.1089/neur.2020.0016. eCollection 2021.

本文引用的文献

1
A Concomitant Muscle Injury Does Not Worsen Traumatic Brain Injury Outcomes in Mice.
Front Neurol. 2018 Dec 11;9:1089. doi: 10.3389/fneur.2018.01089. eCollection 2018.
2
Animal Models of Traumatic Brain Injury and Assessment of Injury Severity.
Mol Neurobiol. 2019 Aug;56(8):5332-5345. doi: 10.1007/s12035-018-1454-5. Epub 2019 Jan 2.
4
Optic tract injury after closed head traumatic brain injury in mice: A model of indirect traumatic optic neuropathy.
PLoS One. 2018 May 10;13(5):e0197346. doi: 10.1371/journal.pone.0197346. eCollection 2018.
5
Combined Blockade of Interleukin-1α and -1β Signaling Protects Mice from Cognitive Dysfunction after Traumatic Brain Injury.
eNeuro. 2018 Apr 13;5(2). doi: 10.1523/ENEURO.0385-17.2018. eCollection 2018 Mar-Apr.
6
Derivation of Haploid Neural Stem Cell Lines by Selection for a Pax6-GFP Reporter.
Stem Cells Dev. 2018 Apr 1;27(7):479-487. doi: 10.1089/scd.2017.0193.
7
Brain injury and neural stem cells.
Neural Regen Res. 2018 Jan;13(1):7-18. doi: 10.4103/1673-5374.224361.
8
The Potential of Stem Cells in Treatment of Traumatic Brain Injury.
Curr Neurol Neurosci Rep. 2018 Jan 25;18(1):1. doi: 10.1007/s11910-018-0812-z.
9
The current state of biomarkers of mild traumatic brain injury.
JCI Insight. 2018 Jan 11;3(1). doi: 10.1172/jci.insight.97105.
10
A Single-Cell RNA Sequencing Study Reveals Cellular and Molecular Dynamics of the Hippocampal Neurogenic Niche.
Cell Rep. 2017 Dec 12;21(11):3271-3284. doi: 10.1016/j.celrep.2017.11.050.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验