Department of Industrial and Systems Engineering, Wisconsin Institute for Healthcare Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
Center for Quality and Productivity Improvement, University of Wisconsin-Madison, Madison, Wisconsin, USA.
BMJ Qual Saf. 2020 Apr;29(4):329-340. doi: 10.1136/bmjqs-2019-009857. Epub 2019 Nov 27.
In this study, we used human factors (HF) methods and principles to design a clinical decision support (CDS) that provides cognitive support to the pulmonary embolism (PE) diagnostic decision-making process in the emergency department. We hypothesised that the application of HF methods and principles will produce a more usable CDS that improves PE diagnostic decision-making, in particular decision about appropriate clinical pathway.
We conducted a scenario-based simulation study to compare a HF-based CDS (the so-called CDS for PE diagnosis (PE-Dx CDS)) with a web-based CDS (MDCalc); 32 emergency physicians performed various tasks using both CDS. PE-Dx integrated HF design principles such as automating information acquisition and analysis, and minimising workload. We assessed all three dimensions of usability using both objective and subjective measures: effectiveness (eg, appropriate decision regarding the PE diagnostic pathway), efficiency (eg, time spent, perceived workload) and satisfaction (perceived usability of CDS).
Emergency physicians made more appropriate diagnostic decisions (94% with PE-Dx; 84% with web-based CDS; p<0.01) and performed experimental tasks faster with the PE-Dx CDS (on average 96 s per scenario with PE-Dx; 117 s with web-based CDS; p<0.001). They also reported lower workload (p<0.001) and higher satisfaction (p<0.001) with PE-Dx.
This simulation study shows that HF methods and principles can improve usability of CDS and diagnostic decision-making. Aspects of the HF-based CDS that provided cognitive support to emergency physicians and improved diagnostic performance included automation of information acquisition (eg, auto-populating risk scoring algorithms), minimisation of workload and support of decision selection (eg, recommending a clinical pathway). These HF design principles can be applied to the design of other CDS technologies to improve diagnostic safety.
本研究运用人因工程学(HF)方法和原则,设计一种临床决策支持(CDS),为急诊科的肺栓塞(PE)诊断决策过程提供认知支持。我们假设应用 HF 方法和原则将产生更便于使用的 CDS,从而改善 PE 诊断决策,特别是关于适当临床路径的决策。
我们进行了一项基于场景的模拟研究,比较了一种基于 HF 的 CDS(所谓的 PE 诊断 CDS(PE-Dx CDS))与基于网络的 CDS(MDCalc);32 名急诊医师使用这两种 CDS 执行各种任务。PE-Dx 集成了 HF 设计原则,例如自动获取和分析信息,以及最小化工作量。我们使用客观和主观测量方法评估了可用性的所有三个维度:效果(例如,关于 PE 诊断途径的适当决策)、效率(例如,花费的时间,感知的工作量)和满意度(对 CDS 的感知可用性)。
急诊医师做出了更恰当的诊断决策(PE-Dx 为 94%;基于网络的 CDS 为 84%;p<0.01),并且使用 PE-Dx CDS 完成实验任务更快(PE-Dx 平均每个场景 96 秒;基于网络的 CDS 为 117 秒;p<0.001)。他们还报告说,使用 PE-Dx 的工作量(p<0.001)和满意度(p<0.001)较低。
这项模拟研究表明,HF 方法和原则可以提高 CDS 的可用性和诊断决策质量。HF 为急诊医师提供认知支持并改善诊断性能的 CDS 方面包括信息采集自动化(例如,自动填充风险评分算法)、工作量最小化和决策选择支持(例如,推荐临床路径)。这些 HF 设计原则可以应用于其他 CDS 技术的设计,以提高诊断安全性。