Suppr超能文献

将人为因素应用于改善临床决策支持的可用性以用于诊断决策:基于场景的模拟研究。

Application of human factors to improve usability of clinical decision support for diagnostic decision-making: a scenario-based simulation study.

机构信息

Department of Industrial and Systems Engineering, Wisconsin Institute for Healthcare Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA

Center for Quality and Productivity Improvement, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

BMJ Qual Saf. 2020 Apr;29(4):329-340. doi: 10.1136/bmjqs-2019-009857. Epub 2019 Nov 27.

Abstract

OBJECTIVE

In this study, we used human factors (HF) methods and principles to design a clinical decision support (CDS) that provides cognitive support to the pulmonary embolism (PE) diagnostic decision-making process in the emergency department. We hypothesised that the application of HF methods and principles will produce a more usable CDS that improves PE diagnostic decision-making, in particular decision about appropriate clinical pathway.

MATERIALS AND METHODS

We conducted a scenario-based simulation study to compare a HF-based CDS (the so-called CDS for PE diagnosis (PE-Dx CDS)) with a web-based CDS (MDCalc); 32 emergency physicians performed various tasks using both CDS. PE-Dx integrated HF design principles such as automating information acquisition and analysis, and minimising workload. We assessed all three dimensions of usability using both objective and subjective measures: effectiveness (eg, appropriate decision regarding the PE diagnostic pathway), efficiency (eg, time spent, perceived workload) and satisfaction (perceived usability of CDS).

RESULTS

Emergency physicians made more appropriate diagnostic decisions (94% with PE-Dx; 84% with web-based CDS; p<0.01) and performed experimental tasks faster with the PE-Dx CDS (on average 96 s per scenario with PE-Dx; 117 s with web-based CDS; p<0.001). They also reported lower workload (p<0.001) and higher satisfaction (p<0.001) with PE-Dx.

CONCLUSIONS

This simulation study shows that HF methods and principles can improve usability of CDS and diagnostic decision-making. Aspects of the HF-based CDS that provided cognitive support to emergency physicians and improved diagnostic performance included automation of information acquisition (eg, auto-populating risk scoring algorithms), minimisation of workload and support of decision selection (eg, recommending a clinical pathway). These HF design principles can be applied to the design of other CDS technologies to improve diagnostic safety.

摘要

目的

本研究运用人因工程学(HF)方法和原则,设计一种临床决策支持(CDS),为急诊科的肺栓塞(PE)诊断决策过程提供认知支持。我们假设应用 HF 方法和原则将产生更便于使用的 CDS,从而改善 PE 诊断决策,特别是关于适当临床路径的决策。

材料和方法

我们进行了一项基于场景的模拟研究,比较了一种基于 HF 的 CDS(所谓的 PE 诊断 CDS(PE-Dx CDS))与基于网络的 CDS(MDCalc);32 名急诊医师使用这两种 CDS 执行各种任务。PE-Dx 集成了 HF 设计原则,例如自动获取和分析信息,以及最小化工作量。我们使用客观和主观测量方法评估了可用性的所有三个维度:效果(例如,关于 PE 诊断途径的适当决策)、效率(例如,花费的时间,感知的工作量)和满意度(对 CDS 的感知可用性)。

结果

急诊医师做出了更恰当的诊断决策(PE-Dx 为 94%;基于网络的 CDS 为 84%;p<0.01),并且使用 PE-Dx CDS 完成实验任务更快(PE-Dx 平均每个场景 96 秒;基于网络的 CDS 为 117 秒;p<0.001)。他们还报告说,使用 PE-Dx 的工作量(p<0.001)和满意度(p<0.001)较低。

结论

这项模拟研究表明,HF 方法和原则可以提高 CDS 的可用性和诊断决策质量。HF 为急诊医师提供认知支持并改善诊断性能的 CDS 方面包括信息采集自动化(例如,自动填充风险评分算法)、工作量最小化和决策选择支持(例如,推荐临床路径)。这些 HF 设计原则可以应用于其他 CDS 技术的设计,以提高诊断安全性。

相似文献

4
The Design of PE Dx, a CDS to Support Pulmonary Embolism Diagnosis in the ED.
Stud Health Technol Inform. 2019 Aug 9;265:134-140. doi: 10.3233/SHTI190152.
6
9
Physicians' Perceptions of Clinical Decision Support to Treat Patients With Heart Failure in the ED.
JAMA Netw Open. 2023 Nov 1;6(11):e2344393. doi: 10.1001/jamanetworkopen.2023.44393.
10
Computerised clinical decision support for suspected PE.
Thorax. 2015 Sep;70(9):909-11. doi: 10.1136/thoraxjnl-2014-206689. Epub 2015 Feb 9.

引用本文的文献

1
Design approaches for developing quality checklists in healthcare organizations: A scoping review.
PLOS Digit Health. 2025 Sep 16;4(9):e0001015. doi: 10.1371/journal.pdig.0001015. eCollection 2025 Sep.
2
A Measurement Science Framework to Optimize CDS for Opioid Use Disorder Treatment in the ED.
Appl Clin Inform. 2025 Aug;16(4):1067-1076. doi: 10.1055/a-2595-0317. Epub 2025 Aug 20.
4
The value of simulation testing for the evaluation of ambient digital scribes: a case report.
J Am Med Inform Assoc. 2025 May 1;32(5):928-931. doi: 10.1093/jamia/ocaf052.
5
Factors Guiding Clinical Decision-Making in Genitourinary Oncology.
Cancer Med. 2024 Oct;13(20):e70304. doi: 10.1002/cam4.70304.
6
Design Approaches for Developing Quality Checklists in Healthcare Organizations: A Scoping Review.
medRxiv. 2024 Sep 28:2024.09.27.24314468. doi: 10.1101/2024.09.27.24314468.
7
Human factors methods in the design of digital decision support systems for population health: a scoping review.
BMC Public Health. 2024 Sep 10;24(1):2458. doi: 10.1186/s12889-024-19968-8.
8
Exploring research and education opportunities in digital health for pharmacy, medicine and other health disciplines: Insights from a multinational workshop.
Explor Res Clin Soc Pharm. 2024 Jun 22;15:100469. doi: 10.1016/j.rcsop.2024.100469. eCollection 2024 Sep.

本文引用的文献

1
An awakening in medicine: the partnership of humanity and intelligent machines.
Lancet Digit Health. 2019 Oct;1(6):e255-e257. doi: 10.1016/s2589-7500(19)30127-x. Epub 2019 Sep 26.
2
Human Factors and Usability for Health Information Technology: Old and New Challenges.
Yearb Med Inform. 2019 Aug;28(1):71-77. doi: 10.1055/s-0039-1677907. Epub 2019 Aug 16.
3
Association of Electronic Health Record Design and Use Factors With Clinician Stress and Burnout.
JAMA Netw Open. 2019 Aug 2;2(8):e199609. doi: 10.1001/jamanetworkopen.2019.9609.
4
Clinical considerations when applying machine learning to decision-support tasks versus automation.
BMJ Qual Saf. 2019 Oct;28(10):778-781. doi: 10.1136/bmjqs-2019-009514. Epub 2019 May 30.
5
8
Decision-centred design in healthcare: The process of identifying a decision support tool for airway management.
Appl Ergon. 2019 May;77:70-82. doi: 10.1016/j.apergo.2019.01.005. Epub 2019 Feb 7.
9
A Decade of Health Information Technology Usability Challenges and the Path Forward.
JAMA. 2019 Feb 26;321(8):743-744. doi: 10.1001/jama.2019.0161.
10
High-performance medicine: the convergence of human and artificial intelligence.
Nat Med. 2019 Jan;25(1):44-56. doi: 10.1038/s41591-018-0300-7. Epub 2019 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验