Suppr超能文献

“电瘾”患者生存指南

A Survival Guide for the "Electro-curious".

机构信息

Department of Chemistry , Scripps Research , 10550 North Torrey Pines Road , La Jolla , California 93037 , United States.

出版信息

Acc Chem Res. 2020 Jan 21;53(1):72-83. doi: 10.1021/acs.accounts.9b00539. Epub 2019 Dec 11.

Abstract

The appeal and promise of synthetic organic electrochemistry have been appreciated over the past century. In terms of redox chemistry, which is frequently encountered when forging new bonds, it is difficult to conceive of a more economical way to add or remove electrons than electrochemistry. Indeed, many of the largest industrial synthetic chemical processes are achieved in a practical way using electrons as a reagent. Why then, after so many years of the documented benefits of electrochemistry, is it not more widely embraced by mainstream practitioners? Erroneous perceptions that electrochemistry is a "black box" combined with a lack of intuitive and inexpensive standardized equipment likely contributed to this stagnation in interest within the synthetic organic community. This barrier to entry is magnified by the fact that many redox processes can already be accomplished using simple chemical reagents even if they are less atom-economic. Time has proven that sustainability and economics are not strong enough driving forces for the adoption of electrochemical techniques within the broader community. Indeed, like many synthetic organic chemists that have dabbled in this age-old technique, our first foray into this area was not by choice but rather through sheer necessity. The unique reactivity benefits of this old redox-modulating technique must therefore be highlighted and leveraged in order to draw organic chemists into the field. Enabling new bonds to be forged with higher levels of chemo- and regioselectivity will likely accomplish this goal. In doing so, it is envisioned that widespread adoption of electrochemistry will go beyond supplanting unsustainable reagents in mundane redox reactions to the development of exciting reactivity paradigms that enable heretofore unimagined retrosynthetic pathways. Whereas the rigorous physical organic chemical principles of electroorganic synthesis have been reviewed elsewhere, it is often the case that such summaries leave out the pragmatic aspects of designing, optimizing, and scaling up preparative electrochemical reactions. Taken together, the task of setting up an electrochemical reaction, much less inventing a new one, can be vexing for even seasoned organic chemists. This Account therefore features a unique format that focuses on addressing this exact issue within the context of our own studies. The graphically rich presentation style pinpoints basic concepts, typical challenges, and key insights for those "electro-curious" chemists who seek to rapidly explore the power of electrochemistry in their research.

摘要

合成有机电化学的吸引力和潜力在过去一个世纪中得到了人们的认可。在形成新键时经常遇到的氧化还原化学中,很难想象有比电化学更经济的添加或去除电子的方法。事实上,许多最大的工业合成化学过程都是通过使用电子作为试剂以实际的方式实现的。那么,为什么在电化学的好处得到如此多的记录之后,它没有被更广泛的主流从业者所接受呢?错误地认为电化学是一个“黑盒子”,再加上缺乏直观和廉价的标准化设备,这可能导致了合成有机界对此兴趣的停滞。这种进入门槛的障碍因以下事实而放大:即使使用不太原子经济的简单化学试剂也可以完成许多氧化还原过程。时间已经证明,可持续性和经济性不足以成为更广泛的社区采用电化学技术的强大驱动力。事实上,就像许多涉足这一古老技术的合成有机化学家一样,我们第一次涉足这个领域并不是出于选择,而是出于必要。因此,必须强调和利用这种古老的氧化还原调节技术的独特反应性优势,以吸引有机化学家进入该领域。通过提高化学和区域选择性来实现新键的形成,很可能会实现这一目标。通过这样做,可以想象电化学的广泛采用将不仅仅取代平凡的氧化还原反应中不可持续的试剂,而是发展出令人兴奋的反应性范例,从而实现以前无法想象的反合成途径。虽然电化学合成的严格物理有机化学原理在其他地方已经得到了回顾,但在设计、优化和扩大制备电化学反应方面,这种总结往往忽略了实际方面。总的来说,即使对于经验丰富的有机化学家来说,设置一个电化学反应的任务,更不用说发明一个新的反应,都可能是令人烦恼的。因此,本账户采用了一种独特的格式,重点解决了我们自己研究中的这一问题。丰富的图形呈现风格为那些寻求快速探索电化学在其研究中强大功能的“电化学好奇”化学家们确定了基本概念、典型挑战和关键见解。

相似文献

1
A Survival Guide for the "Electro-curious".
Acc Chem Res. 2020 Jan 21;53(1):72-83. doi: 10.1021/acs.accounts.9b00539. Epub 2019 Dec 11.
2
Catalyzing Electrosynthesis: A Homogeneous Electrocatalytic Approach to Reaction Discovery.
Acc Chem Res. 2020 Mar 17;53(3):547-560. doi: 10.1021/acs.accounts.9b00529. Epub 2020 Feb 20.
3
From Molecules to Molecular Surfaces. Exploiting the Interplay Between Organic Synthesis and Electrochemistry.
Acc Chem Res. 2020 Jan 21;53(1):135-143. doi: 10.1021/acs.accounts.9b00578. Epub 2019 Dec 31.
4
Synthetic Organic Electrochemistry: Calling All Engineers.
Angew Chem Int Ed Engl. 2018 Apr 9;57(16):4149-4155. doi: 10.1002/anie.201707584. Epub 2017 Nov 3.
5
The Fundamentals Behind the Use of Flow Reactors in Electrochemistry.
Acc Chem Res. 2019 Oct 15;52(10):2858-2869. doi: 10.1021/acs.accounts.9b00412. Epub 2019 Oct 1.
6
Radical Retrosynthesis.
Acc Chem Res. 2018 Aug 21;51(8):1807-1817. doi: 10.1021/acs.accounts.8b00209. Epub 2018 Aug 2.
7
The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules.
Chem Soc Rev. 2006 Jul;35(7):605-21. doi: 10.1039/b512308a. Epub 2006 Mar 6.
8
"How Should I Think about Voltage? What Is Overpotential?": Establishing an Organic Chemistry Intuition for Electrochemistry.
J Org Chem. 2021 Nov 19;86(22):15875-15885. doi: 10.1021/acs.joc.1c01520. Epub 2021 Oct 5.
9
Function through synthesis-informed design.
Acc Chem Res. 2015 Mar 17;48(3):752-60. doi: 10.1021/acs.accounts.5b00004. Epub 2015 Mar 5.
10
Synthetic Organic Electrochemistry: An Enabling and Innately Sustainable Method.
ACS Cent Sci. 2016 May 25;2(5):302-8. doi: 10.1021/acscentsci.6b00091. Epub 2016 May 5.

引用本文的文献

1
Recyclable Multifunctional Ionic Liquids for Sustainable Electroorganic Oxidations.
ACS Electrochem. 2025 Jul 9;1(9):1659-1665. doi: 10.1021/acselectrochem.5c00108. eCollection 2025 Sep 4.
3
Tech-Enhanced Synthesis: Exploring the Synergy between Organic Chemistry and Technology.
J Am Chem Soc. 2025 Aug 13;147(32):28523-28545. doi: 10.1021/jacs.5c10303. Epub 2025 Aug 5.
4
Isochromene and Dihydroisobenzofuran Electrosynthesis by a Highly Regiodivergent Cyclization of 2-Ethynylbenzaldehydes.
J Org Chem. 2025 Jul 11;90(27):9532-9540. doi: 10.1021/acs.joc.5c00967. Epub 2025 Jun 29.
5
Recent synthetic methodology advancements towards all-carbon quaternary center formation and applications.
Tetrahedron. 2025 Sep 1;183. doi: 10.1016/j.tet.2025.134711. Epub 2025 May 14.
6
Electrochemical synthesis of allenyl silanes and allenyl boronic esters.
Nat Commun. 2025 May 17;16(1):4593. doi: 10.1038/s41467-025-59033-5.
8
Electrochemical Commodity Polymer Up- and Re-Cycling: Toward Sustainable and Circular Plastic Treatment.
Macromol Rapid Commun. 2025 Aug;46(15):e2500143. doi: 10.1002/marc.202500143. Epub 2025 Apr 18.
9
Highly-Selective Electrochemical Decarboxylative Late-Stage Functionalization of Amino Acids.
Chemistry. 2025 May 19;31(28):e202501287. doi: 10.1002/chem.202501287. Epub 2025 Apr 24.

本文引用的文献

1
Electrochemical C(sp)-H Fluorination.
Synlett. 2019 Jun;30(10):1178-1182. doi: 10.1055/s-0037-1611737. Epub 2019 Mar 1.
2
Enantioselective Electroreductive Coupling of Alkenyl and Benzyl Halides via Nickel Catalysis.
ACS Catal. 2019 Aug 2;9(8):6751-6754. doi: 10.1021/acscatal.9b01785. Epub 2019 Jul 25.
3
The Fundamentals Behind the Use of Flow Reactors in Electrochemistry.
Acc Chem Res. 2019 Oct 15;52(10):2858-2869. doi: 10.1021/acs.accounts.9b00412. Epub 2019 Oct 1.
4
Hindered dialkyl ether synthesis with electrogenerated carbocations.
Nature. 2019 Sep;573(7774):398-402. doi: 10.1038/s41586-019-1539-y. Epub 2019 Sep 9.
5
A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms.
Chem Sci. 2019 May 23;10(26):6404-6422. doi: 10.1039/c9sc01545k. eCollection 2019 Jul 14.
6
Electrochemically Driven, Ni-Catalyzed Aryl Amination: Scope, Mechanism, and Applications.
J Am Chem Soc. 2019 Apr 17;141(15):6392-6402. doi: 10.1021/jacs.9b01886. Epub 2019 Apr 2.
7
Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry.
Science. 2019 Feb 22;363(6429):838-845. doi: 10.1126/science.aav5606.
8
11-Step Total Synthesis of Teleocidins B-1-B-4.
J Am Chem Soc. 2019 Jan 30;141(4):1494-1497. doi: 10.1021/jacs.8b13697. Epub 2019 Jan 15.
9
Electrochemical Azidooxygenation of Alkenes Mediated by a TEMPO-N Charge-Transfer Complex.
J Am Chem Soc. 2018 Oct 3;140(39):12511-12520. doi: 10.1021/jacs.8b06744. Epub 2018 Sep 12.
10
Radical Retrosynthesis.
Acc Chem Res. 2018 Aug 21;51(8):1807-1817. doi: 10.1021/acs.accounts.8b00209. Epub 2018 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验