Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
Mathematical Institute, Leiden University, Leiden, The Netherlands.
Clin Pharmacol Ther. 2020 Apr;107(4):786-795. doi: 10.1002/cpt.1744. Epub 2020 Jan 22.
Despite the application of advanced statistical and pharmacometric approaches to pediatric trial data, a large pediatric evidence gap still remains. Here, we discuss how to collect more data from children by using real-world data from electronic health records, mobile applications, wearables, and social media. The large datasets collected with these approaches enable and may demand the use of artificial intelligence and machine learning to allow the data to be analyzed for decision making. Applications of this approach are presented, which include the prediction of future clinical complications, medical image analysis, identification of new pediatric end points and biomarkers, the prediction of treatment nonresponders, and the prediction of placebo-responders for trial enrichment. Finally, we discuss how to bring machine learning from science to pediatric clinical practice. We conclude that advantage should be taken of the current opportunities offered by innovations in data science and machine learning to close the pediatric evidence gap.
尽管在儿科试验数据中应用了先进的统计和药代动力学方法,但仍存在很大的儿科证据差距。在这里,我们讨论如何通过使用电子健康记录、移动应用程序、可穿戴设备和社交媒体中的真实世界数据从儿童身上收集更多数据。通过这些方法收集的大型数据集使得并且可能需要使用人工智能和机器学习来允许对数据进行分析以做出决策。介绍了该方法的应用,包括预测未来的临床并发症、医学图像分析、确定新的儿科终点和生物标志物、预测治疗无应答者以及预测试验富集的安慰剂应答者。最后,我们讨论了如何将机器学习从科学应用到儿科临床实践中。我们得出结论,应该利用数据科学和机器学习创新带来的当前机会来缩小儿科证据差距。