Suppr超能文献

网络方法在精神病理学中的应用:2008-2018 年文献回顾与未来研究议程。

The network approach to psychopathology: a review of the literature 2008-2018 and an agenda for future research.

机构信息

Department of Psychiatry, Massachusetts General Hospital, Boston, MA02114, USA.

Harvard Medical School, Boston, MA02114, USA.

出版信息

Psychol Med. 2020 Feb;50(3):353-366. doi: 10.1017/S0033291719003404. Epub 2019 Dec 26.

Abstract

The network approach to psychopathology posits that mental disorders can be conceptualized and studied as causal systems of mutually reinforcing symptoms. This approach, first posited in 2008, has grown substantially over the past decade and is now a full-fledged area of psychiatric research. In this article, we provide an overview and critical analysis of 363 articles produced in the first decade of this research program, with a focus on key theoretical, methodological, and empirical contributions. In addition, we turn our attention to the next decade of the network approach and propose critical avenues for future research in each of these domains. We argue that this program of research will be best served by working toward two overarching aims: (a) the identification of robust empirical phenomena and (b) the development of formal theories that can explain those phenomena. We recommend specific steps forward within this broad framework and argue that these steps are necessary if the network approach is to develop into a progressive program of research capable of producing a cumulative body of knowledge about how specific mental disorders operate as causal systems.

摘要

网络精神病理学方法假设,精神障碍可以被概念化为相互强化症状的因果系统,并进行研究。该方法于 2008 年首次提出,在过去十年中得到了实质性的发展,现已成为精神病学研究的一个成熟领域。在本文中,我们对该研究计划的第一个十年中产生的 363 篇文章进行了概述和批判性分析,重点关注关键的理论、方法和经验贡献。此外,我们将注意力转向网络方法的下一个十年,并针对这些领域中的每一个提出未来研究的关键途径。我们认为,为实现以下两个总体目标,该研究计划将得到最好的服务:(a) 确定稳健的经验现象,以及(b) 发展能够解释这些现象的形式理论。我们在这个广泛的框架内提出了具体的前进步骤,并认为如果网络方法要发展成为一个能够积累关于特定精神障碍如何作为因果系统运作的知识的渐进式研究计划,那么这些步骤是必要的。

相似文献

1
The network approach to psychopathology: a review of the literature 2008-2018 and an agenda for future research.
Psychol Med. 2020 Feb;50(3):353-366. doi: 10.1017/S0033291719003404. Epub 2019 Dec 26.
2
Modeling psychopathology: From data models to formal theories.
Psychol Methods. 2022 Dec;27(6):930-957. doi: 10.1037/met0000303. Epub 2021 Nov 4.
3
Moving Forward: Challenges and Directions for Psychopathological Network Theory and Methodology.
Perspect Psychol Sci. 2017 Nov;12(6):999-1020. doi: 10.1177/1745691617705892. Epub 2017 Sep 5.
5
Psychopathological networks: Theory, methods and practice.
Behav Res Ther. 2022 Feb;149:104011. doi: 10.1016/j.brat.2021.104011. Epub 2021 Dec 1.
6
Don't blame the model: Reconsidering the network approach to psychopathology.
Psychol Rev. 2018 Jul;125(4):606-615. doi: 10.1037/rev0000108.
7
Jumping back onto the giants' shoulders: Why emotional memory should be considered in a network perspective of psychopathology.
Behav Res Ther. 2022 Sep;156:104154. doi: 10.1016/j.brat.2022.104154. Epub 2022 Jul 8.
8
A network theory of mental disorders.
World Psychiatry. 2017 Feb;16(1):5-13. doi: 10.1002/wps.20375.
9
The causal systems approach to prolonged grief: Recent developments and future directions.
Curr Opin Psychol. 2022 Apr;44:24-30. doi: 10.1016/j.copsyc.2021.08.020. Epub 2021 Aug 25.
10
Social factors in psychopathology: stress, social support, and coping processes.
Annu Rev Psychol. 1985;36:531-72. doi: 10.1146/annurev.ps.36.020185.002531.

引用本文的文献

1
Unveiling the Hierarchical Network of Sleep Quality Determinants: Linking Behavioral, Environmental, and Psychosocial Pathways.
Psychol Res Behav Manag. 2025 Sep 2;18:1853-1870. doi: 10.2147/PRBM.S553199. eCollection 2025.
4
Major Problems in Clinical Psychological Science and How to Address them. Introducing a Multimodal Dynamical Network Approach.
Cognit Ther Res. 2024 Oct;48(5):791-807. doi: 10.1007/s10608-024-10487-9. Epub 2024 Jun 24.
7
Fatigue as a central bridge: temporal dynamics between problematic smartphone use and depressive symptoms in Chinese adolescents.
Child Adolesc Psychiatry Ment Health. 2025 Jul 5;19(1):73. doi: 10.1186/s13034-025-00937-x.
8
Dynamic changes in network structure of depressive symptoms: a two-year naturalistic follow-up study.
BMC Psychiatry. 2025 Jul 3;25(1):676. doi: 10.1186/s12888-025-07124-4.

本文引用的文献

1
Inverse Generative Social Science: Backward to the Future.
J Artif Soc Soc Simul. 2023;26(2). doi: 10.18564/jasss.5083. Epub 2023 Mar 31.
2
Comparing network structures on three aspects: A permutation test.
Psychol Methods. 2023 Dec;28(6):1273-1285. doi: 10.1037/met0000476. Epub 2022 Apr 11.
3
Sampling Variability Is Not Nonreplication: A Bayesian Reanalysis of Forbes, Wright, Markon, and Krueger.
Multivariate Behav Res. 2021 Mar-Apr;56(2):249-255. doi: 10.1080/00273171.2020.1797460. Epub 2020 Jul 30.
4
Psychometric network models from time-series and panel data.
Psychometrika. 2020 Mar;85(1):206-231. doi: 10.1007/s11336-020-09697-3. Epub 2020 Mar 11.
5
Comparing Gaussian graphical models with the posterior predictive distribution and Bayesian model selection.
Psychol Methods. 2020 Oct;25(5):653-672. doi: 10.1037/met0000254. Epub 2020 Feb 20.
6
Psychological networks in clinical populations: investigating the consequences of Berkson's bias.
Psychol Med. 2021 Jan;51(1):168-176. doi: 10.1017/S0033291719003209. Epub 2019 Dec 4.
7
Emotion-Network Density in Major Depressive Disorder.
Clin Psychol Sci. 2015 Mar;3(2):292-300. doi: 10.1177/2167702614540645. Epub 2014 Aug 4.
8
Problems with Centrality Measures in Psychopathology Symptom Networks: Why Network Psychometrics Cannot Escape Psychometric Theory.
Multivariate Behav Res. 2021 Mar-Apr;56(2):199-223. doi: 10.1080/00273171.2019.1640103. Epub 2019 Aug 12.
9
What do centrality measures measure in psychological networks?
J Abnorm Psychol. 2019 Nov;128(8):892-903. doi: 10.1037/abn0000446. Epub 2019 Jul 18.
10
Back to the basics: Rethinking partial correlation network methodology.
Br J Math Stat Psychol. 2020 May;73(2):187-212. doi: 10.1111/bmsp.12173. Epub 2019 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验