Department of Internal Medicine/Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
J Leukoc Biol. 2020 Mar;107(3):467-484. doi: 10.1002/JLB.3A1119-236R. Epub 2020 Jan 2.
The pyruvate dehydrogenase complex (PDC)/pyruvate dehydrogenase kinase (PDK) axis directs the universal survival principles of immune resistance and tolerance in monocytes by controlling anabolic and catabolic energetics. Immune resistance shifts to immune tolerance during inflammatory shock syndromes when inactivation of PDC by increased PDK activity disrupts the tricarboxylic acid (TCA) cycle support of anabolic pathways. The transition from immune resistance to tolerance also diverts the TCA cycle from citrate-derived cis-aconitate to itaconate, a recently discovered catabolic mediator that separates the TCA cycle at isocitrate and succinate dehydrogenase (SDH). Itaconate inhibits succinate dehydrogenase and its anabolic role in mitochondrial ATP generation. We previously reported that inhibiting PDK in septic mice with dichloroacetate (DCA) increased TCA cycle activity, reversed septic shock, restored innate and adaptive immune and organ function, and increased survival. Here, using unbiased metabolomics in a monocyte culture model of severe acute inflammation that simulates sepsis reprogramming, we show that DCA-induced activation of PDC restored anabolic energetics in inflammatory monocytes while increasing TCA cycle intermediates, decreasing itaconate, and increasing amino acid anaplerotic catabolism of branched-chain amino acids (BCAAs). Our study provides new mechanistic insight that the DCA-stimulated PDC homeostat reconfigures the TCA cycle and promotes anabolic energetics in monocytes by reducing levels of the catabolic mediator itaconate. It further supports the theory that PDC is an energy sensing and signaling homeostat that restores metabolic and energy fitness during acute inflammation.
丙酮酸脱氢酶复合物(PDC)/丙酮酸脱氢酶激酶(PDK)轴通过控制合成代谢和分解代谢能量学,指导单核细胞中免疫抵抗和耐受的普遍生存原则。在炎症性休克综合征中,PDC 的失活通过增加 PDK 活性破坏三羧酸(TCA)循环对合成代谢途径的支持,导致免疫抵抗向免疫耐受转变。从免疫抵抗到耐受的转变也使 TCA 循环从柠檬酸衍生的顺乌头酸转向异柠檬酸和琥珀酸脱氢酶(SDH)分离的 TCA 循环的最近发现的分解代谢介质衣康酸。衣康酸抑制琥珀酸脱氢酶及其在线粒体 ATP 生成中的合成代谢作用。我们之前报道过,用二氯乙酸(DCA)抑制脓毒症小鼠中的 PDK 可增加 TCA 循环活性,逆转脓毒症休克,恢复固有和适应性免疫及器官功能,并提高存活率。在这里,我们在模拟脓毒症重编程的严重急性炎症单核细胞培养模型中使用无偏代谢组学,表明 DCA 诱导的 PDC 激活恢复了炎症单核细胞的合成代谢能量学,同时增加了 TCA 循环中间产物,降低了衣康酸水平,并增加了支链氨基酸(BCAA)的氨基酸补料分解代谢。我们的研究提供了新的机制见解,即 DCA 刺激的 PDC 同型物重新配置 TCA 循环,并通过降低分解代谢介质衣康酸的水平,促进单核细胞中的合成代谢能量学。它进一步支持了 PDC 是能量感应和信号同型物的理论,它在急性炎症期间恢复代谢和能量适应性。