Suppr超能文献

胶质瘤差异网络分析的开放数据。

Open Data for Differential Network Analysis in Glioma.

机构信息

Holzinger Group HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria.

出版信息

Int J Mol Sci. 2020 Jan 15;21(2):547. doi: 10.3390/ijms21020547.

Abstract

The complexity of cancer diseases demands bioinformatic techniques and translational research based on big data and personalized medicine. Open data enables researchers to accelerate cancer studies, save resources and foster collaboration. Several tools and programming approaches are available for analyzing data, including annotation, clustering, comparison and extrapolation, merging, enrichment, functional association and statistics. We exploit openly available data via cancer gene expression analysis, we apply refinement as well as enrichment analysis via gene ontology and conclude with graph-based visualization of involved protein interaction networks as a basis for signaling. The different databases allowed for the construction of huge networks or specified ones consisting of high-confidence interactions only. Several genes associated to glioma were isolated via a network analysis from top hub nodes as well as from an outlier analysis. The latter approach highlights a mitogen-activated protein kinase next to a member of histondeacetylases and a protein phosphatase as genes uncommonly associated with glioma. Cluster analysis from top hub nodes lists several identified glioma-associated gene products to function within protein complexes, including epidermal growth factors as well as cell cycle proteins or RAS proto-oncogenes. By using selected exemplary tools and open-access resources for cancer research and differential network analysis, we highlight disturbed signaling components in brain cancer subtypes of glioma.

摘要

癌症疾病的复杂性需要基于大数据和个性化医学的生物信息学技术和转化研究。开放数据使研究人员能够加速癌症研究、节省资源并促进合作。有几种工具和编程方法可用于分析数据,包括注释、聚类、比较和推断、合并、富集、功能关联和统计。我们通过癌症基因表达分析利用公开可用的数据,通过基因本体论进行细化和富集分析,并以涉及蛋白质相互作用网络的基于图的可视化作为信号转导的基础。不同的数据库允许构建巨大的网络或仅由高可信度相互作用组成的特定网络。通过网络分析从顶级枢纽节点以及异常值分析中分离出与神经胶质瘤相关的几个基因。后一种方法突出了丝裂原活化蛋白激酶旁边的组蛋白去乙酰化酶成员和蛋白磷酸酶作为与神经胶质瘤不常见相关的基因。来自顶级枢纽节点的聚类分析列出了几种已识别的与神经胶质瘤相关的基因产物,它们在蛋白质复合物中发挥作用,包括表皮生长因子以及细胞周期蛋白或 RAS 原癌基因。通过使用癌症研究和差异网络分析的选定示例工具和开放访问资源,我们突出了脑癌亚型神经胶质瘤中信号转导受损的成分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2791/7013918/8a9cb95de5d9/ijms-21-00547-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验