Department of Biological Sciences, Kent State University, Kent, OH, USA.
Department of Chemistry, Kent State University, Kent, OH, USA.
Nanomedicine. 2020 Feb;24:102158. doi: 10.1016/j.nano.2020.102158. Epub 2020 Jan 23.
Iron oxide nanoparticles (IONPs) have been increasingly used in various biomedical applications in preclinical and clinical settings. Although the interactions of IONPs with macrophages have been well-reported in the context of nanoparticle toxicity, harnessing the capacity of IONPs in reprograming macrophages towards bactericidal activity has not been explored. Here, using an in vitro culture model of macrophages and an in vivo mouse model of skin wound infection by Staphylococcus aureus (S. aureus), we demonstrated that IONPs in combination with a strategy to trigger the Fenton reaction could significantly enhance bactericidal effects of macrophages against intracellular S. aureus by inducing a M1 macrophage polarization that stimulates the production of reactive oxygen species. Our study supports that harnessing the characteristic of IONPs to tune macrophage polarization to exhibit a bactericidal activity may provide a new strategy for treating infectious diseases.
氧化铁纳米颗粒(IONPs)在临床前和临床环境中的各种生物医学应用中得到了越来越多的应用。尽管 IONPs 与巨噬细胞的相互作用在纳米颗粒毒性方面已有很好的报道,但利用 IONPs 来重新编程巨噬细胞使其具有杀菌活性尚未得到探索。在这里,我们使用体外培养的巨噬细胞模型和体内金黄色葡萄球菌(S. aureus)皮肤伤口感染的小鼠模型,证明了 IONPs 与引发芬顿反应的策略结合使用可以通过诱导 M1 巨噬细胞极化来显著增强巨噬细胞对细胞内 S. aureus 的杀菌作用,从而刺激活性氧的产生。我们的研究支持利用 IONPs 的特性来调节巨噬细胞极化以表现出杀菌活性,可能为治疗传染病提供一种新策略。