Suppr超能文献

利用氧化铁纳米颗粒提高巨噬细胞对金黄色葡萄球菌的杀菌活性。

Harnessing iron-oxide nanoparticles towards the improved bactericidal activity of macrophage against Staphylococcus aureus.

机构信息

Department of Biological Sciences, Kent State University, Kent, OH, USA.

Department of Chemistry, Kent State University, Kent, OH, USA.

出版信息

Nanomedicine. 2020 Feb;24:102158. doi: 10.1016/j.nano.2020.102158. Epub 2020 Jan 23.

Abstract

Iron oxide nanoparticles (IONPs) have been increasingly used in various biomedical applications in preclinical and clinical settings. Although the interactions of IONPs with macrophages have been well-reported in the context of nanoparticle toxicity, harnessing the capacity of IONPs in reprograming macrophages towards bactericidal activity has not been explored. Here, using an in vitro culture model of macrophages and an in vivo mouse model of skin wound infection by Staphylococcus aureus (S. aureus), we demonstrated that IONPs in combination with a strategy to trigger the Fenton reaction could significantly enhance bactericidal effects of macrophages against intracellular S. aureus by inducing a M1 macrophage polarization that stimulates the production of reactive oxygen species. Our study supports that harnessing the characteristic of IONPs to tune macrophage polarization to exhibit a bactericidal activity may provide a new strategy for treating infectious diseases.

摘要

氧化铁纳米颗粒(IONPs)在临床前和临床环境中的各种生物医学应用中得到了越来越多的应用。尽管 IONPs 与巨噬细胞的相互作用在纳米颗粒毒性方面已有很好的报道,但利用 IONPs 来重新编程巨噬细胞使其具有杀菌活性尚未得到探索。在这里,我们使用体外培养的巨噬细胞模型和体内金黄色葡萄球菌(S. aureus)皮肤伤口感染的小鼠模型,证明了 IONPs 与引发芬顿反应的策略结合使用可以通过诱导 M1 巨噬细胞极化来显著增强巨噬细胞对细胞内 S. aureus 的杀菌作用,从而刺激活性氧的产生。我们的研究支持利用 IONPs 的特性来调节巨噬细胞极化以表现出杀菌活性,可能为治疗传染病提供一种新策略。

相似文献

1
Harnessing iron-oxide nanoparticles towards the improved bactericidal activity of macrophage against Staphylococcus aureus.
Nanomedicine. 2020 Feb;24:102158. doi: 10.1016/j.nano.2020.102158. Epub 2020 Jan 23.
2
Interaction of Iron Oxide Nanoparticles with Macrophages Is Influenced Distinctly by "Self" and "Non-Self" Biological Identities.
ACS Appl Mater Interfaces. 2023 Aug 2;15(30):35906-35926. doi: 10.1021/acsami.3c05555. Epub 2023 Jul 21.
3
Mechanism of Iron Oxide-Induced Macrophage Activation: The Impact of Composition and the Underlying Signaling Pathway.
J Am Chem Soc. 2019 Apr 17;141(15):6122-6126. doi: 10.1021/jacs.8b10904. Epub 2019 Apr 4.
4
Iron oxide nanoparticles induce cytokine secretion in a complement-dependent manner in a human whole blood model.
Int J Nanomedicine. 2017 May 23;12:3927-3940. doi: 10.2147/IJN.S136453. eCollection 2017.
5
Toxicity of bare and surfaced functionalized iron oxide nanoparticles towards microalgae.
Int J Phytoremediation. 2016;18(6):643-50. doi: 10.1080/15226514.2015.1086300.
6
Polyethylenimine-coated SPIONs trigger macrophage activation through TLR-4 signaling and ROS production and modulate podosome dynamics.
Biomaterials. 2015 Jun;52:494-506. doi: 10.1016/j.biomaterials.2015.02.068. Epub 2015 Mar 18.
7
Antioxidant Iron Oxide Nanoparticles: Their Biocompatibility and Bioactive Properties.
Int J Mol Sci. 2023 Nov 2;24(21):15901. doi: 10.3390/ijms242115901.

引用本文的文献

2
Magnetic microfiber hyperthermia for synergistic antimicrobial activity against methicillin-resistant .
Mater Today Bio. 2025 May 12;32:101862. doi: 10.1016/j.mtbio.2025.101862. eCollection 2025 Jun.
3
Biotransformation and biological fate of magnetic iron oxide nanoparticles for biomedical research and clinical applications.
Nanoscale Adv. 2025 Mar 24;7(10):2818-2886. doi: 10.1039/d5na00195a. eCollection 2025 May 13.
4
How Nanoparticles Help in Combating Chronic Wound Biofilms Infection?
Int J Nanomedicine. 2024 Nov 15;19:11883-11921. doi: 10.2147/IJN.S484473. eCollection 2024.
5
Progress in antibacterial applications of nanozymes.
Front Chem. 2024 Sep 23;12:1478273. doi: 10.3389/fchem.2024.1478273. eCollection 2024.
6
Targeting and activation of macrophages in leishmaniasis. A focus on iron oxide nanoparticles.
Front Immunol. 2024 Aug 15;15:1437430. doi: 10.3389/fimmu.2024.1437430. eCollection 2024.
7
Influence of Physicochemical Properties of Iron Oxide Nanoparticles on Their Antibacterial Activity.
ACS Omega. 2024 Jul 25;9(31):33303-33334. doi: 10.1021/acsomega.4c02822. eCollection 2024 Aug 6.
8
The Promise of Metal-Doped Iron Oxide Nanoparticles as Antimicrobial Agent.
ACS Omega. 2023 Dec 21;9(1):16-32. doi: 10.1021/acsomega.3c06323. eCollection 2024 Jan 9.
9
Nanobiomaterials: exploring mechanistic roles in combating microbial infections and cancer.
Discov Nano. 2023 Dec 20;18(1):158. doi: 10.1186/s11671-023-03946-x.
10
Modulation of macrophage polarization by iron-based nanoparticles.
Med Rev (2021). 2023 Apr 18;3(2):105-122. doi: 10.1515/mr-2023-0002. eCollection 2023 Apr.

本文引用的文献

2
Toxicity of iron oxide nanoparticles: Size and coating effects.
J Biochem Mol Toxicol. 2018 Dec;32(12):e22225. doi: 10.1002/jbt.22225. Epub 2018 Oct 5.
3
Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics.
3 Biotech. 2018 Jun;8(6):279. doi: 10.1007/s13205-018-1286-z. Epub 2018 Jun 1.
4
Human macrophage responses to metal-oxide nanoparticles: a review.
Artif Cells Nanomed Biotechnol. 2018;46(sup2):694-703. doi: 10.1080/21691401.2018.1468767. Epub 2018 May 4.
5
Glycoprotein Nonmelanoma Clone B Regulates the Crosstalk between Macrophages and Mesenchymal Stem Cells toward Wound Repair.
J Invest Dermatol. 2018 Jan;138(1):219-227. doi: 10.1016/j.jid.2017.08.034. Epub 2017 Sep 9.
6
Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications.
Sci Technol Adv Mater. 2015 Apr 28;16(2):023501. doi: 10.1088/1468-6996/16/2/023501. eCollection 2015 Apr.
7
Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues.
Nat Nanotechnol. 2016 Nov;11(11):986-994. doi: 10.1038/nnano.2016.168. Epub 2016 Sep 26.
8
The responses of immune cells to iron oxide nanoparticles.
J Appl Toxicol. 2016 Apr;36(4):543-53. doi: 10.1002/jat.3282. Epub 2016 Jan 28.
9
Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus.
Pathogens. 2015 Nov 27;4(4):826-68. doi: 10.3390/pathogens4040826.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验