Suppr超能文献

EMT 信号转导:CRISPR/Cas 基因编辑的潜在贡献。

EMT signaling: potential contribution of CRISPR/Cas gene editing.

机构信息

Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.

Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.

出版信息

Cell Mol Life Sci. 2020 Jul;77(14):2701-2722. doi: 10.1007/s00018-020-03449-3. Epub 2020 Feb 1.

Abstract

Epithelial to mesenchymal transition (EMT) is a complex plastic and reversible cellular process that has critical roles in diverse physiological and pathological phenomena. EMT is involved in embryonic development, organogenesis and tissue repair, as well as in fibrosis, cancer metastasis and drug resistance. In recent years, the ability to edit the genome using the clustered regularly interspaced palindromic repeats (CRISPR) and associated protein (Cas) system has greatly contributed to identify or validate critical genes in pathway signaling. This review delineates the complex EMT networks and discusses recent studies that have used CRISPR/Cas technology to further advance our understanding of the EMT process.

摘要

上皮间质转化(EMT)是一个复杂的、具有可塑性和可逆性的细胞过程,在多种生理和病理现象中起着关键作用。EMT 参与胚胎发育、器官发生和组织修复,以及纤维化、癌症转移和耐药性。近年来,使用成簇规律间隔短回文重复(CRISPR)和相关蛋白(Cas)系统编辑基因组的能力极大地促进了对途径信号中关键基因的鉴定或验证。本文阐述了复杂的 EMT 网络,并讨论了最近使用 CRISPR/Cas 技术的研究,这些研究进一步推进了我们对 EMT 过程的理解。

相似文献

1
EMT signaling: potential contribution of CRISPR/Cas gene editing.
Cell Mol Life Sci. 2020 Jul;77(14):2701-2722. doi: 10.1007/s00018-020-03449-3. Epub 2020 Feb 1.
2
Recent advances in CRISPR technologies for genome editing.
Arch Pharm Res. 2021 Jun;44(6):537-552. doi: 10.1007/s12272-021-01336-4. Epub 2021 Jun 23.
3
History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology.
J Bacteriol. 2018 Mar 12;200(7). doi: 10.1128/JB.00580-17. Print 2018 Apr 1.
5
CRISPR-Based Technologies: Impact of RNA-Targeting Systems.
Mol Cell. 2018 Nov 1;72(3):404-412. doi: 10.1016/j.molcel.2018.09.018.
6
CRISPR-cas9 genome editing delivery systems for targeted cancer therapy.
Life Sci. 2021 Feb 15;267:118969. doi: 10.1016/j.lfs.2020.118969. Epub 2020 Dec 29.
7
Rational designs of in vivo CRISPR-Cas delivery systems.
Adv Drug Deliv Rev. 2021 Jan;168:3-29. doi: 10.1016/j.addr.2019.11.005. Epub 2019 Nov 21.
8
Approach for in vivo delivery of CRISPR/Cas system: a recent update and future prospect.
Cell Mol Life Sci. 2021 Mar;78(6):2683-2708. doi: 10.1007/s00018-020-03725-2. Epub 2021 Jan 3.
9
CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement.
J Zhejiang Univ Sci B. 2021 Apr 15;22(4):253-284. doi: 10.1631/jzus.B2100009.
10
Methods for In Vivo CRISPR/Cas Editing of the Adult Murine Retina.
Methods Mol Biol. 2018;1715:113-133. doi: 10.1007/978-1-4939-7522-8_9.

引用本文的文献

1
Epithelial-Mesenchymal Transition in Cancer: Insights Into Therapeutic Targets and Clinical Implications.
MedComm (2020). 2025 Aug 29;6(9):e70333. doi: 10.1002/mco2.70333. eCollection 2025 Sep.
3
Matrix metalloproteinase-driven epithelial-mesenchymal transition: implications in health and disease.
J Transl Med. 2025 Apr 11;23(1):436. doi: 10.1186/s12967-025-06447-w.
5
Editorial: CRISPR advancement in cancer research and future perspectives.
Front Oncol. 2023 Mar 9;13:1173527. doi: 10.3389/fonc.2023.1173527. eCollection 2023.
8
Nidogen: A matrix protein with potential roles in musculoskeletal tissue regeneration.
Genes Dis. 2021 Apr 2;9(3):598-609. doi: 10.1016/j.gendis.2021.03.004. eCollection 2022 May.
9
Transcription activator-like effector nuclease (TALEN) as a promising diagnostic approach for COVID-19.
Expert Rev Mol Diagn. 2022 Apr;22(4):395-397. doi: 10.1080/14737159.2022.2065194. Epub 2022 Apr 13.
10
Editing Genes by CRISPR-Cas: Current Insights and Future Perspectives.
Int J Mol Sci. 2021 Oct 20;22(21):11321. doi: 10.3390/ijms222111321.

本文引用的文献

1
Engineered materials for in vivo delivery of genome-editing machinery.
Nat Rev Mater. 2019 Nov;4:726-737. doi: 10.1038/s41578-019-0145-9. Epub 2019 Oct 4.
2
Systemic Delivery of CRISPR/Cas9 Targeting HPV Oncogenes Is Effective at Eliminating Established Tumors.
Mol Ther. 2019 Dec 4;27(12):2091-2099. doi: 10.1016/j.ymthe.2019.08.012. Epub 2019 Aug 29.
4
Systems Biology of Cancer Metastasis.
Cell Syst. 2019 Aug 28;9(2):109-127. doi: 10.1016/j.cels.2019.07.003.
5
SNAIL1 employs β-Catenin-LEF1 complexes to control colorectal cancer cell invasion and proliferation.
Int J Cancer. 2020 Apr 15;146(8):2229-2242. doi: 10.1002/ijc.32644. Epub 2019 Sep 18.
6
Blockade of MDM2 with inactive Cas9 prevents epithelial to mesenchymal transition in retinal pigment epithelial cells.
Lab Invest. 2019 Dec;99(12):1874-1886. doi: 10.1038/s41374-019-0307-9. Epub 2019 Aug 22.
7
c-Myb promotes growth and metastasis of colorectal cancer through c-fos-induced epithelial-mesenchymal transition.
Cancer Sci. 2019 Oct;110(10):3183-3196. doi: 10.1111/cas.14141. Epub 2019 Aug 13.
8
Targeting FGFR overcomes EMT-mediated resistance in EGFR mutant non-small cell lung cancer.
Oncogene. 2019 Sep;38(37):6399-6413. doi: 10.1038/s41388-019-0887-2. Epub 2019 Jul 19.
10
Proteomic identification of a marker signature for MAPKi resistance in melanoma.
EMBO J. 2019 Aug 1;38(15):e95874. doi: 10.15252/embj.201695874. Epub 2019 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验