Suppr超能文献

用于 PET/MRI 体模的骨材料模拟物。

Bone material analogues for PET/MRI phantoms.

机构信息

Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, 94143, USA.

Department of Radiology, Washington University, St. Louis, MO, 63110, USA.

出版信息

Med Phys. 2020 Jun;47(5):2161-2170. doi: 10.1002/mp.14079. Epub 2020 Mar 13.

Abstract

PURPOSE

To develop bone material analogues that can be used in construction of phantoms for simultaneous PET/MRI systems.

METHODS

Plaster was used as the basis for the bone material analogues tested in this study. It was mixed with varying concentrations of an iodinated CT contrast, a gadolinium-based MR contrast agent, and copper sulfate to modulate the attenuation properties and MRI properties (T1 and T2*). Attenuation was measured with CT and Ge transmission scans, and MRI properties were measured with quantitative ultrashort echo time pulse sequences. A proof-of-concept skull was created by plaster casting.

RESULTS

Undoped plaster has a 511 keV attenuation coefficient (0.14 cm ) similar to cortical bone (0.10-0.15 cm ), but slightly longer T1 (500 ms) and T2* (~1.2 ms) MR parameters compared to bone (T1 ~ 300 ms, T2* ~ 0.4 ms). Doping with the iodinated agent resulted in increased attenuation with minimal perturbation to the MR parameters. Doping with a gadolinium chelate greatly reduced T1 and T2*, resulting in extremely short T1 values when the target T2* values were reached, while the attenuation coefficient was unchanged. Doping with copper sulfate was more selective for T2* shortening and achieved comparable T1 and T2* values to bone (after 1 week of drying), while the attenuation coefficient was unchanged.

CONCLUSIONS

Plaster doped with copper sulfate is a promising bone material analogue for a PET/MRI phantom, mimicking the MR properties (T1 and T2*) and 511 keV attenuation coefficient of human cortical bone.

摘要

目的

开发可用于 PET/MRI 系统同时成像的体模的骨材料模拟物。

方法

本研究中使用石膏作为骨材料模拟物的基础。它与不同浓度的碘基 CT 造影剂、基于钆的磁共振对比剂和硫酸铜混合,以调节衰减特性和 MRI 特性(T1 和 T2*)。衰减通过 CT 和 Ge 透射扫描进行测量,MRI 特性通过定量超短回波时间脉冲序列进行测量。通过石膏浇铸创建了一个颅骨模型。

结果

未掺杂的石膏具有 511keV 的衰减系数(约 0.14cm),类似于皮质骨(0.10-0.15cm),但与骨相比,T1(300ms)和 T2*(0.4ms)较长(T1500ms,T2*1.2ms)。掺杂碘造影剂会导致衰减增加,而对 MR 参数的干扰最小。掺杂镧系螯合物会大大降低 T1 和 T2*,当达到目标 T2值时,会导致 T1 值极短,而衰减系数保持不变。掺杂硫酸铜对 T2缩短的选择性更高,可实现与骨相当的 T1 和 T2*值(干燥 1 周后),而衰减系数保持不变。

结论

掺杂硫酸铜的石膏是一种有前途的 PET/MRI 体模骨材料模拟物,可模拟人体皮质骨的 MR 特性(T1 和 T2*)和 511keV 衰减系数。

相似文献

1
Bone material analogues for PET/MRI phantoms.
Med Phys. 2020 Jun;47(5):2161-2170. doi: 10.1002/mp.14079. Epub 2020 Mar 13.
3
MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences.
J Nucl Med. 2010 May;51(5):812-8. doi: 10.2967/jnumed.109.065425.
4
Improving the CT (140 kVp) to PET (511 keV) conversion in PET/MR hardware component attenuation correction.
Med Phys. 2020 Jun;47(5):2116-2127. doi: 10.1002/mp.14091. Epub 2020 Mar 16.
5
Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone.
Neuroimage. 2014 Jan 1;84:206-16. doi: 10.1016/j.neuroimage.2013.08.042. Epub 2013 Aug 29.
6
MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation.
Ann Nucl Med. 2013 Feb;27(2):152-62. doi: 10.1007/s12149-012-0667-3. Epub 2012 Dec 21.
7
A liver-mimicking MRI phantom for thermal ablation experiments.
Med Phys. 2011 May;38(5):2674-84. doi: 10.1118/1.3570577.

引用本文的文献

1
Review of imaging test phantoms.
J Biomed Opt. 2023 Aug;28(8):080903. doi: 10.1117/1.JBO.28.8.080903. Epub 2023 Aug 22.
2
Synthetic PET via Domain Translation of 3-D MRI.
IEEE Trans Radiat Plasma Med Sci. 2023 Apr;7(4):333-343. doi: 10.1109/trpms.2022.3223275. Epub 2022 Nov 18.
3
Multimodal phantoms for clinical PET/MRI.
EJNMMI Phys. 2021 Aug 26;8(1):62. doi: 10.1186/s40658-021-00408-0.
4
Attenuation correction for human PET/MRI studies.
Phys Med Biol. 2020 Dec 2;65(23):23TR02. doi: 10.1088/1361-6560/abb0f8.
5
A realistic phantom of the human head for PET-MRI.
EJNMMI Phys. 2020 Aug 5;7(1):52. doi: 10.1186/s40658-020-00320-z.

本文引用的文献

1
Dixon-VIBE Deep Learning (DIVIDE) Pseudo-CT Synthesis for Pelvis PET/MR Attenuation Correction.
J Nucl Med. 2019 Mar;60(3):429-435. doi: 10.2967/jnumed.118.209288. Epub 2018 Aug 30.
3
Three-dimensional printing CT-derived objects with controllable radiopacity.
J Appl Clin Med Phys. 2018 Mar;19(2):317-328. doi: 10.1002/acm2.12278. Epub 2018 Feb 7.
5
In vivo characterization of brain ultrashort-T components.
Magn Reson Med. 2018 Aug;80(2):726-735. doi: 10.1002/mrm.27037. Epub 2017 Dec 1.
7
Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom.
Magn Reson Med. 2018 Jan;79(1):48-61. doi: 10.1002/mrm.26982. Epub 2017 Oct 30.
8
Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging.
Radiology. 2018 Feb;286(2):676-684. doi: 10.1148/radiol.2017170700. Epub 2017 Sep 19.
9
PET/MRI: Where might it replace PET/CT?
J Magn Reson Imaging. 2017 Nov;46(5):1247-1262. doi: 10.1002/jmri.25711. Epub 2017 Mar 30.
10
A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients.
Neuroimage. 2017 Feb 15;147:346-359. doi: 10.1016/j.neuroimage.2016.12.010. Epub 2016 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验