Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, 94143, USA.
Department of Radiology, Washington University, St. Louis, MO, 63110, USA.
Med Phys. 2020 Jun;47(5):2161-2170. doi: 10.1002/mp.14079. Epub 2020 Mar 13.
To develop bone material analogues that can be used in construction of phantoms for simultaneous PET/MRI systems.
Plaster was used as the basis for the bone material analogues tested in this study. It was mixed with varying concentrations of an iodinated CT contrast, a gadolinium-based MR contrast agent, and copper sulfate to modulate the attenuation properties and MRI properties (T1 and T2*). Attenuation was measured with CT and Ge transmission scans, and MRI properties were measured with quantitative ultrashort echo time pulse sequences. A proof-of-concept skull was created by plaster casting.
Undoped plaster has a 511 keV attenuation coefficient (0.14 cm ) similar to cortical bone (0.10-0.15 cm ), but slightly longer T1 (500 ms) and T2* (~1.2 ms) MR parameters compared to bone (T1 ~ 300 ms, T2* ~ 0.4 ms). Doping with the iodinated agent resulted in increased attenuation with minimal perturbation to the MR parameters. Doping with a gadolinium chelate greatly reduced T1 and T2*, resulting in extremely short T1 values when the target T2* values were reached, while the attenuation coefficient was unchanged. Doping with copper sulfate was more selective for T2* shortening and achieved comparable T1 and T2* values to bone (after 1 week of drying), while the attenuation coefficient was unchanged.
Plaster doped with copper sulfate is a promising bone material analogue for a PET/MRI phantom, mimicking the MR properties (T1 and T2*) and 511 keV attenuation coefficient of human cortical bone.
开发可用于 PET/MRI 系统同时成像的体模的骨材料模拟物。
本研究中使用石膏作为骨材料模拟物的基础。它与不同浓度的碘基 CT 造影剂、基于钆的磁共振对比剂和硫酸铜混合,以调节衰减特性和 MRI 特性(T1 和 T2*)。衰减通过 CT 和 Ge 透射扫描进行测量,MRI 特性通过定量超短回波时间脉冲序列进行测量。通过石膏浇铸创建了一个颅骨模型。
未掺杂的石膏具有 511keV 的衰减系数(约 0.14cm),类似于皮质骨(0.10-0.15cm),但与骨相比,T1(300ms)和 T2*(0.4ms)较长(T1500ms,T2*1.2ms)。掺杂碘造影剂会导致衰减增加,而对 MR 参数的干扰最小。掺杂镧系螯合物会大大降低 T1 和 T2*,当达到目标 T2值时,会导致 T1 值极短,而衰减系数保持不变。掺杂硫酸铜对 T2缩短的选择性更高,可实现与骨相当的 T1 和 T2*值(干燥 1 周后),而衰减系数保持不变。
掺杂硫酸铜的石膏是一种有前途的 PET/MRI 体模骨材料模拟物,可模拟人体皮质骨的 MR 特性(T1 和 T2*)和 511keV 衰减系数。