Department of Ophthalmology, Tsukazaki Hospital, Himeji, Japan.
Department of Technology and Design Thinking for Medicine, Hiroshima University Graduate School, Hiroshima, Japan.
Cornea. 2020 Jun;39(6):720-725. doi: 10.1097/ICO.0000000000002279.
To evaluate the ability of deep learning (DL) models to detect obstructive meibomian gland dysfunction (MGD) using in vivo laser confocal microscopy images.
For this study, we included 137 images from 137 individuals with obstructive MGD (mean age, 49.9 ± 17.7 years; 44 men and 93 women) and 84 images from 84 individuals with normal meibomian glands (mean age, 53.3 ± 19.6 years; 29 men and 55 women). We constructed and trained 9 different network structures and used single and ensemble DL models and calculated the area under the curve, sensitivity, and specificity to compare the diagnostic abilities of the DL.
For the single DL model (the highest model; DenseNet-201), the area under the curve, sensitivity, and specificity for diagnosing obstructive MGD were 0.966%, 94.2%, and 82.1%, respectively, and for the ensemble DL model (the highest ensemble model; VGG16, DenseNet-169, DenseNet-201, and InceptionV3), 0.981%, 92.1%, and 98.8%, respectively.
Our network combining DL and in vivo laser confocal microscopy learned to differentiate between images of healthy meibomian glands and images of obstructive MGD with a high level of accuracy that may allow for automatic obstructive MGD diagnoses in patients in the future.
评估深度学习(DL)模型使用活体激光共聚焦显微镜图像检测阻塞性睑板腺功能障碍(MGD)的能力。
本研究纳入了 137 例阻塞性 MGD 患者(平均年龄 49.9±17.7 岁;男 44 例,女 93 例)和 84 例正常睑板腺患者(平均年龄 53.3±19.6 岁;男 29 例,女 55 例)的 137 张和 84 张图像。我们构建并训练了 9 种不同的网络结构,并使用单和集成 DL 模型计算曲线下面积、敏感性和特异性,以比较 DL 的诊断能力。
对于单 DL 模型(最高模型;DenseNet-201),诊断阻塞性 MGD 的曲线下面积、敏感性和特异性分别为 0.966%、94.2%和 82.1%,而对于集成 DL 模型(最高集成模型;VGG16、DenseNet-169、DenseNet-201 和 InceptionV3),分别为 0.981%、92.1%和 98.8%。
我们的结合了深度学习和活体激光共聚焦显微镜的网络学会了以高精度区分健康睑板腺和阻塞性 MGD 的图像,这可能允许未来对患者进行自动阻塞性 MGD 诊断。