Suppr超能文献

利用超极化水增强的蛋白质三维和碳检测二维 NMR 灵敏度。

Sensitivity-enhanced three-dimensional and carbon-detected two-dimensional NMR of proteins using hyperpolarized water.

机构信息

Faculty of Chemistry, Institute for Biological Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria.

Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.

出版信息

J Biomol NMR. 2020 Mar;74(2-3):161-171. doi: 10.1007/s10858-020-00301-5. Epub 2020 Feb 10.

Abstract

Signal enhancements of up to two orders of magnitude in protein NMR can be achieved by employing HDO as a vector to introduce hyperpolarization into folded or intrinsically disordered proteins. In this approach, hyperpolarized HDO produced by dissolution-dynamic nuclear polarization (D-DNP) is mixed with a protein solution waiting in a high-field NMR spectrometer, whereupon amide proton exchange and nuclear Overhauser effects (NOE) transfer hyperpolarization to the protein and enable acquisition of a signal-enhanced high-resolution spectrum. To date, the use of this strategy has been limited to 1D and H-N 2D correlation experiments. Here we introduce 2D C-detected D-DNP, to reduce exchange-induced broadening and other relaxation penalties that can adversely affect proton-detected D-DNP experiments. We also introduce hyperpolarized 3D spectroscopy, opening the possibility of D-DNP studies of larger proteins and IDPs, where assignment and residue-specific investigation may be impeded by spectral crowding. The signal enhancements obtained depend in particular on the rates of chemical and magnetic exchange of the observed residues, thus resulting in non-uniform 'hyperpolarization-selective' signal enhancements. The resulting spectral sparsity, however, makes it possible to resolve and monitor individual amino acids in IDPs of over 200 residues at acquisition times of just over a minute. We apply the proposed experiments to two model systems: the compactly folded protein ubiquitin, and the intrinsically disordered protein (IDP) osteopontin (OPN).

摘要

通过将 HDO 用作向量,将极化引入折叠或固有无序蛋白质中,蛋白质 NMR 中的信号可增强多达两个数量级。在这种方法中,通过溶解动态核极化(D-DNP)产生的超极化 HDO 与在高场 NMR 光谱仪中等待的蛋白质溶液混合,酰胺质子交换和核 Overhauser 效应(NOE)将极化转移到蛋白质上,并能够获得增强的高分辨率谱。迄今为止,该策略的使用仅限于 1D 和 H-N 2D 相关实验。在这里,我们引入了 2D C 检测的 D-DNP,以减少交换诱导的展宽和其他可能对质子检测的 D-DNP 实验产生不利影响的弛豫惩罚。我们还引入了超极化的 3D 光谱学,为更大的蛋白质和 IDP 的 D-DNP 研究打开了可能性,在这些研究中,分配和残基特异性研究可能会受到光谱拥挤的阻碍。所获得的信号增强特别取决于观察到的残基的化学和磁交换速率,从而导致非均匀的“极化选择性”信号增强。然而,由此产生的光谱稀疏性使得在不到一分钟的采集时间内就可以解析和监测超过 200 个残基的 IDP 中的单个氨基酸。我们将提出的实验应用于两个模型系统:紧密折叠的蛋白质泛素和固有无序的蛋白质(IDP)骨桥蛋白(OPN)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c09f/7080779/0a2722939d07/10858_2020_301_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验