Suppr超能文献

放射组学简介。

Introduction to Radiomics.

机构信息

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York

Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

出版信息

J Nucl Med. 2020 Apr;61(4):488-495. doi: 10.2967/jnumed.118.222893. Epub 2020 Feb 14.

Abstract

Radiomics is a rapidly evolving field of research concerned with the extraction of quantitative metrics-the so-called radiomic features-within medical images. Radiomic features capture tissue and lesion characteristics such as heterogeneity and shape and may, alone or in combination with demographic, histologic, genomic, or proteomic data, be used for clinical problem solving. The goal of this continuing education article is to provide an introduction to the field, covering the basic radiomics workflow: feature calculation and selection, dimensionality reduction, and data processing. Potential clinical applications in nuclear medicine that include PET radiomics-based prediction of treatment response and survival will be discussed. Current limitations of radiomics, such as sensitivity to acquisition parameter variations, and common pitfalls will also be covered.

摘要

放射组学是一个快速发展的研究领域,专注于从医学图像中提取定量指标,即所谓的放射组学特征。放射组学特征可捕获组织和病变特征,如异质性和形状,并且可以单独或与人口统计学、组织学、基因组学或蛋白质组学数据结合使用,以解决临床问题。本文旨在提供该领域的简介,涵盖基本的放射组学工作流程:特征计算和选择、降维和数据处理。还将讨论核医学中的潜在临床应用,包括基于 PET 放射组学预测治疗反应和生存。还将涵盖放射组学的当前局限性,例如对采集参数变化的敏感性以及常见的陷阱。

相似文献

1
Introduction to Radiomics.
J Nucl Med. 2020 Apr;61(4):488-495. doi: 10.2967/jnumed.118.222893. Epub 2020 Feb 14.
2
Radiomics in Nuclear Medicine Applied to Radiation Therapy: Methods, Pitfalls, and Challenges.
Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):1117-1142. doi: 10.1016/j.ijrobp.2018.05.022. Epub 2018 May 22.
3
Nuclear medicine radiomics in precision medicine: why we can't do without artificial intelligence.
Q J Nucl Med Mol Imaging. 2020 Sep;64(3):278-290. doi: 10.23736/S1824-4785.20.03263-X. Epub 2020 May 12.
4
Technical Note: Ontology-guided radiomics analysis workflow (O-RAW).
Med Phys. 2019 Dec;46(12):5677-5684. doi: 10.1002/mp.13844. Epub 2019 Oct 25.
5
Radiomics: Data Are Also Images.
J Nucl Med. 2019 Sep;60(Suppl 2):38S-44S. doi: 10.2967/jnumed.118.220582.
6
CT radiomics and PET radiomics: ready for clinical implementation?
Q J Nucl Med Mol Imaging. 2019 Dec;63(4):355-370. doi: 10.23736/S1824-4785.19.03192-3. Epub 2019 Sep 13.
7
Radiomics and artificial intelligence applications in pediatric brain tumors.
World J Pediatr. 2024 Aug;20(8):747-763. doi: 10.1007/s12519-024-00823-0. Epub 2024 Jun 27.
8
Plausibility and redundancy analysis to select FDG-PET textural features in non-small cell lung cancer.
Med Phys. 2021 Mar;48(3):1226-1238. doi: 10.1002/mp.14684. Epub 2021 Feb 6.
9
Radiomics and Artificial Intelligence in Renal Lesion Assessment.
Crit Rev Oncog. 2024;29(2):65-75. doi: 10.1615/CritRevOncog.2023051084.
10
Ultrasound-based radiomics: current status, challenges and future opportunities.
Med Ultrason. 2022 Dec 21;24(4):451-460. doi: 10.11152/mu-3248. Epub 2021 Nov 11.

引用本文的文献

1
Benchmarking feature projection methods in radiomics.
Sci Rep. 2025 Sep 5;15(1):32368. doi: 10.1038/s41598-025-16070-w.
5
Integration of multi-omics approaches in exploring intra-tumoral heterogeneity.
Cancer Cell Int. 2025 Aug 29;25(1):317. doi: 10.1186/s12935-025-03944-2.
7
Advancements in Radiomics-Based AI for Pancreatic Ductal Adenocarcinoma.
Bioengineering (Basel). 2025 Aug 6;12(8):849. doi: 10.3390/bioengineering12080849.

本文引用的文献

1
Radiomic features of glucose metabolism enable prediction of outcome in mantle cell lymphoma.
Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2760-2769. doi: 10.1007/s00259-019-04420-6. Epub 2019 Jul 8.
2
Assessing radiomic feature robustness to interpolation in F-FDG PET imaging.
Sci Rep. 2019 Jul 4;9(1):9649. doi: 10.1038/s41598-019-46030-0.
3
Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis.
Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2638-2655. doi: 10.1007/s00259-019-04391-8. Epub 2019 Jun 25.
4
What can artificial intelligence teach us about the molecular mechanisms underlying disease?
Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2715-2721. doi: 10.1007/s00259-019-04370-z. Epub 2019 Jun 12.
6
DeepPET: A deep encoder-decoder network for directly solving the PET image reconstruction inverse problem.
Med Image Anal. 2019 May;54:253-262. doi: 10.1016/j.media.2019.03.013. Epub 2019 Mar 30.
7
Machine Learning in Nuclear Medicine: Part 1-Introduction.
J Nucl Med. 2019 Apr;60(4):451-458. doi: 10.2967/jnumed.118.223495. Epub 2019 Feb 7.
9
Radiomic signature of F fluorodeoxyglucose PET/CT for prediction of gastric cancer survival and chemotherapeutic benefits.
Theranostics. 2018 Nov 12;8(21):5915-5928. doi: 10.7150/thno.28018. eCollection 2018.
10
External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy.
Eur J Nucl Med Mol Imaging. 2019 Apr;46(4):864-877. doi: 10.1007/s00259-018-4231-9. Epub 2018 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验