Suppr超能文献

基于关联模式分类的乳腺癌诊断新型数学模型

Novel Mathematical Model of Breast Cancer Diagnostics Using an Associative Pattern Classification.

作者信息

Santiago-Montero Raúl, Sossa Humberto, Gutiérrez-Hernández David A, Zamudio Víctor, Hernández-Bautista Ignacio, Valadez-Godínez Sergio

机构信息

Tecnológico Nacional de México/Instituto Tecnológico de León, León 37290, Guanajuato, Mexico.

Instituto Politécnico Nacional (CIC), CD de México 07738, Mexico.

出版信息

Diagnostics (Basel). 2020 Mar 1;10(3):136. doi: 10.3390/diagnostics10030136.

Abstract

Breast cancer is a disease that has emerged as the second leading cause of cancer deaths in women worldwide. The annual mortality rate is estimated to continue growing. Cancer detection at an early stage could significantly reduce breast cancer death rates long-term. Many investigators have studied different breast diagnostic approaches, such as mammography, magnetic resonance imaging, ultrasound, computerized tomography, positron emission tomography and biopsy. However, these techniques have limitations, such as being expensive, time consuming and not suitable for women of all ages. Proposing techniques that support the effective medical diagnosis of this disease has undoubtedly become a priority for the government, for health institutions and for civil society in general. In this paper, an associative pattern classifier (APC) was used for the diagnosis of breast cancer. The rate of efficiency obtained on the Wisconsin breast cancer database was 97.31%. The APC's performance was compared with the performance of a support vector machine (SVM) model, back-propagation neural networks, C4.5, naive Bayes, k-nearest neighbor (k-NN) and minimum distance classifiers. According to our results, the APC performed best. The algorithm of the APC was written and executed in a JAVA platform, as well as the experimental and comparativeness between algorithms.

摘要

乳腺癌已成为全球女性癌症死亡的第二大主要原因。据估计,其年死亡率将持续上升。早期癌症检测可长期显著降低乳腺癌死亡率。许多研究人员研究了不同的乳腺诊断方法,如乳房X光检查、磁共振成像、超声、计算机断层扫描、正电子发射断层扫描和活检。然而,这些技术存在局限性,如成本高、耗时且不适用于所有年龄段的女性。提出支持有效诊断这种疾病的技术无疑已成为政府、卫生机构和整个民间社会的优先事项。在本文中,一种关联模式分类器(APC)被用于乳腺癌诊断。在威斯康星乳腺癌数据库上获得的效率为97.31%。将APC的性能与支持向量机(SVM)模型、反向传播神经网络、C4.5、朴素贝叶斯、k近邻(k-NN)和最小距离分类器的性能进行了比较。根据我们的结果,APC表现最佳。APC的算法在JAVA平台上编写并执行,以及算法之间的实验和比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b55c/7151177/bebcf10557d4/diagnostics-10-00136-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验