Suppr超能文献

藓类():非种子植物的模式生物。

The Moss () : A Model Organism for Non-Seed Plants.

机构信息

Faculty of Biology, Plant Cell Biology, Philipps University of Marburg, 35037 Marburg an der Lahn, Hesse, Germany

Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269.

出版信息

Plant Cell. 2020 May;32(5):1361-1376. doi: 10.1105/tpc.19.00828. Epub 2020 Mar 9.

Abstract

Since the discovery two decades ago that transgenes are efficiently integrated into the genome of by homologous recombination, this moss has been a premier model system to study evolutionary developmental biology questions, stem cell reprogramming, and the biology of nonvascular plants. was the first non-seed plant to have its genome sequenced. With this level of genomic information, together with increasing molecular genetic tools, a large number of reverse genetic studies have propelled the use of this model system. A number of technological advances have recently opened the door to forward genetics as well as extremely efficient and precise genome editing in Additionally, careful phylogenetic studies with increased resolution have suggested that emerged from within Thus, rather than , the species should be named Here we review these advances and describe the areas where has had the most impact on plant biology.

摘要

自二十年前发现转基因能够通过同源重组有效地整合到 的基因组中以来,这种苔藓一直是研究进化发育生物学问题、干细胞重编程和非维管束植物生物学的主要模式系统。 是第一个基因组测序的非种子植物。有了这种基因组信息水平,再加上越来越多的分子遗传工具,大量的反向遗传学研究推动了这种模式系统的应用。最近,一些技术进步为正向遗传学以及 的高效和精确基因组编辑打开了大门。此外,分辨率提高的仔细系统发育研究表明, 是从 内部进化而来的。因此,与其说 是一个独立的物种,不如说它应该被命名为 。在这里,我们回顾这些进展,并描述 在植物生物学中最有影响力的领域。

相似文献

1
The Moss () : A Model Organism for Non-Seed Plants.
Plant Cell. 2020 May;32(5):1361-1376. doi: 10.1105/tpc.19.00828. Epub 2020 Mar 9.
3
High gene space divergence contrasts with frozen vegetative architecture in the moss family Funariaceae.
Mol Phylogenet Evol. 2021 Jan;154:106965. doi: 10.1016/j.ympev.2020.106965. Epub 2020 Sep 19.
5
Evolutionary crossroads in developmental biology: Physcomitrella patens.
Development. 2010 Nov;137(21):3535-43. doi: 10.1242/dev.049023.
9
Plastid Transformation in Physcomitrium (Physcomitrella) patens: An Update.
Methods Mol Biol. 2021;2317:321-331. doi: 10.1007/978-1-0716-1472-3_19.

引用本文的文献

1
Novel small molecules disrupting polarized cell expansion and development in the moss, .
Plant Biotechnol (Tokyo). 2025 Jun 25;42(2):131-143. doi: 10.5511/plantbiotechnology.25.0209a.
3
Additive Effects of Multiple Photoprotective Mechanisms Drive Efficient Photosynthesis Under Variable Light Conditions.
Plant Cell Environ. 2025 Oct;48(10):7186-7198. doi: 10.1111/pce.70016. Epub 2025 Jun 17.
4
Establishing cell polarity in plants: the role of cytoskeletal structures and regulatory pathways.
Front Cell Dev Biol. 2025 May 9;13:1602463. doi: 10.3389/fcell.2025.1602463. eCollection 2025.
5
The Extended Synaptotagmins of .
Plants (Basel). 2025 Mar 25;14(7):1027. doi: 10.3390/plants14071027.
6
In situ cavitation bubble manometry reveals a lack of light-activated guard cell turgor modulation in bryophytes.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2419887122. doi: 10.1073/pnas.2419887122. Epub 2025 Mar 26.
7
Synthetic gene circuits in plants: recent advances and challenges.
Quant Plant Biol. 2025 Feb 27;6:e6. doi: 10.1017/qpb.2025.3. eCollection 2025.
8
The genetic puzzle of multicopy genes: challenges and troubleshooting.
Plant Methods. 2025 Mar 7;21(1):32. doi: 10.1186/s13007-025-01329-0.

本文引用的文献

3
DEK1 displays a strong subcellular polarity during Physcomitrella patens 3D growth.
New Phytol. 2020 May;226(4):1029-1041. doi: 10.1111/nph.16417. Epub 2020 Feb 14.
5
Reconstructing trait evolution in plant evo-devo studies.
Curr Biol. 2019 Nov 4;29(21):R1110-R1118. doi: 10.1016/j.cub.2019.09.044.
6
Geometric cues forecast the switch from two- to three-dimensional growth in Physcomitrella patens.
New Phytol. 2020 Mar;225(5):1945-1955. doi: 10.1111/nph.16276. Epub 2019 Dec 3.
7
Efficient and modular CRISPR-Cas9 vector system for .
Plant Direct. 2019 Sep 12;3(9):e00168. doi: 10.1002/pld3.168. eCollection 2019 Sep.
10
A CRISPR/LbCas12a-based method for highly efficient multiplex gene editing in Physcomitrella patens.
Plant J. 2019 Nov;100(4):863-872. doi: 10.1111/tpj.14478. Epub 2019 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验