Suppr超能文献

线粒体 DNA 对核基因组具有强烈的选择作用。

Strong selective effects of mitochondrial DNA on the nuclear genome.

机构信息

Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202

Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202.

出版信息

Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6616-6621. doi: 10.1073/pnas.1910141117. Epub 2020 Mar 10.

Abstract

Oxidative phosphorylation, the primary source of cellular energy in eukaryotes, requires gene products encoded in both the nuclear and mitochondrial genomes. As a result, functional integration between the genomes is essential for efficient adenosine triphosphate (ATP) generation. Although within populations this integration is presumably maintained by coevolution, the importance of mitonuclear coevolution in key biological processes such as speciation and mitochondrial disease has been questioned. In this study, we crossed populations of the intertidal copepod to disrupt putatively coevolved mitonuclear genotypes in reciprocal F hybrids. We utilized interindividual variation in developmental rate among these hybrids as a proxy for fitness to assess the strength of selection imposed on the nuclear genome by alternate mitochondrial genotypes. Developmental rate varied among hybrid individuals, and in vitro ATP synthesis rates of mitochondria isolated from high-fitness hybrids were approximately two-fold greater than those of mitochondria isolated from low-fitness individuals. We then used Pool-seq to compare nuclear allele frequencies for high- or low-fitness hybrids. Significant biases for maternal alleles were detected on 5 (of 12) chromosomes in high-fitness individuals of both reciprocal crosses, whereas maternal biases were largely absent in low-fitness individuals. Therefore, the most fit hybrids were those with nuclear alleles that matched their mitochondrial genotype on these chromosomes, suggesting that mitonuclear effects underlie individual-level variation in developmental rate and that intergenomic compatibility is critical for high fitness. We conclude that mitonuclear interactions can have profound impacts on both physiological performance and the evolutionary trajectory of the nuclear genome.

摘要

氧化磷酸化是真核生物细胞能量的主要来源,需要核基因组和线粒体基因组编码的基因产物。因此,基因组之间的功能整合对于高效产生三磷酸腺苷(ATP)至关重要。尽管在种群内,这种整合可能是通过共同进化来维持的,但线粒体与核基因组的共同进化在关键的生物学过程中的重要性,如物种形成和线粒体疾病,一直受到质疑。在这项研究中,我们对潮间带桡足类进行了杂交,以破坏假定在互惠 F 杂种中共同进化的线粒体与核基因型。我们利用这些杂种个体间发育速度的个体间变异作为适合度的替代指标,评估不同线粒体基因型对核基因组施加的选择强度。发育速度在杂种个体之间存在差异,并且从高适合度杂种中分离的线粒体的体外 ATP 合成率比从低适合度个体中分离的线粒体高约两倍。然后,我们使用 Pool-seq 比较了高或低适合度杂种的核等位基因频率。在两个互惠杂交的高适合度个体中,有 5 条(共 12 条)染色体上检测到了母系等位基因的显著偏倚,而在低适合度个体中,母系偏倚基本不存在。因此,最适合的杂种是那些在这些染色体上与它们的线粒体基因型匹配的核等位基因的杂种,这表明线粒体与核基因组的相互作用是个体发育速度变异的基础,并且基因组间的兼容性对于高适合度至关重要。我们得出结论,线粒体与核基因组的相互作用可以对生理表现和核基因组的进化轨迹产生深远影响。

相似文献

1
Strong selective effects of mitochondrial DNA on the nuclear genome.
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6616-6621. doi: 10.1073/pnas.1910141117. Epub 2020 Mar 10.
5
Developmental rate displays effects of inheritance but not of sex in interpopulation hybrids of Tigriopus californicus.
J Exp Zool A Ecol Integr Physiol. 2023 Aug;339(7):671-683. doi: 10.1002/jez.2709. Epub 2023 May 24.
7
Elevated oxidative damage is correlated with reduced fitness in interpopulation hybrids of a marine copepod.
Proc Biol Sci. 2013 Jul 31;280(1767):20131521. doi: 10.1098/rspb.2013.1521. Print 2013 Sep 22.
8
Interpopulation hybrid breakdown maps to the mitochondrial genome.
Evolution. 2008 Mar;62(3):631-8. doi: 10.1111/j.1558-5646.2007.00305.x. Epub 2007 Dec 10.
9
Recovery from hybrid breakdown reveals a complex genetic architecture of mitonuclear incompatibilities.
Mol Ecol. 2021 Dec;30(23):6403-6416. doi: 10.1111/mec.15985. Epub 2021 Jun 8.
10
Evidence for hybrid breakdown in production of red carotenoids in the marine invertebrate Tigriopus californicus.
PLoS One. 2021 Nov 8;16(11):e0259371. doi: 10.1371/journal.pone.0259371. eCollection 2021.

引用本文的文献

3
Assessing the role of mitonuclear interactions on mitochondrial function and organismal fitness in natural populations.
Evol Lett. 2024 Aug 9;8(6):916-926. doi: 10.1093/evlett/qrae043. eCollection 2024 Dec.
4
Nuclear compensatory evolution driven by mito-nuclear incompatibilities.
Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2411672121. doi: 10.1073/pnas.2411672121. Epub 2024 Oct 11.
5
An evolving roadmap: using mitochondrial physiology to help guide conservation efforts.
Conserv Physiol. 2024 Sep 7;12(1):coae063. doi: 10.1093/conphys/coae063. eCollection 2024.
7
Inference of selective forces on house mouse genomes during secondary contact in East Asia.
Genome Res. 2024 Apr 25;34(3):366-375. doi: 10.1101/gr.278828.123.
8
Mitonuclear interactions modulate nutritional preference.
Biol Lett. 2023 Dec;19(12):20230375. doi: 10.1098/rsbl.2023.0375. Epub 2023 Dec 6.
9
Mitonuclear interactions shape both direct and parental effects of diet on fitness and involve a SNP in mitoribosomal 16s rRNA.
PLoS Biol. 2023 Aug 21;21(8):e3002218. doi: 10.1371/journal.pbio.3002218. eCollection 2023 Aug.
10
Mapping mitonuclear epistasis using a novel recombinant yeast population.
PLoS Genet. 2023 Mar 29;19(3):e1010401. doi: 10.1371/journal.pgen.1010401. eCollection 2023 Mar.

本文引用的文献

1
Reconciling the Mitonuclear Compatibility Species Concept with Rampant Mitochondrial Introgression.
Integr Comp Biol. 2019 Oct 1;59(4):912-924. doi: 10.1093/icb/icz019.
2
Variation in Thermal Tolerance and Its Relationship to Mitochondrial Function Across Populations of .
Front Physiol. 2019 Mar 15;10:213. doi: 10.3389/fphys.2019.00213. eCollection 2019.
4
Assessing the fitness consequences of mitonuclear interactions in natural populations.
Biol Rev Camb Philos Soc. 2019 Jun;94(3):1089-1104. doi: 10.1111/brv.12493. Epub 2018 Dec 26.
6
Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus.
Nat Ecol Evol. 2018 Aug;2(8):1250-1257. doi: 10.1038/s41559-018-0588-1. Epub 2018 Jul 9.
8
GENETIC EVIDENCE FOR LONG TERM PERSISTENCE OF MARINE INVERTEBRATE POPULATIONS IN AN EPHEMERAL ENVIRONMENT.
Evolution. 1997 Jun;51(3):993-998. doi: 10.1111/j.1558-5646.1997.tb03681.x.
9
HYBRID BREAKDOWN IN DEVELOPMENTAL TIME IN THE COPEPOD TIGRIOPUS CALIFORNICUS.
Evolution. 1990 Nov;44(7):1814-1822. doi: 10.1111/j.1558-5646.1990.tb05252.x.
10
HETEROSIS AND OUTBREEDING DEPRESSION IN INTERPOPULATION CROSSES SPANNING A WIDE RANGE OF DIVERGENCE.
Evolution. 1999 Dec;53(6):1757-1768. doi: 10.1111/j.1558-5646.1999.tb04560.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验