Suppr超能文献

三磷酸腺苷(ATP)和电压依赖性电代谢信号调节心脏中的血流。

ATP- and voltage-dependent electro-metabolic signaling regulates blood flow in heart.

机构信息

Laboratory of Molecular Cardiology, Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201;

Laboratory of Molecular Cardiology, Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201.

出版信息

Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7461-7470. doi: 10.1073/pnas.1922095117. Epub 2020 Mar 13.

Abstract

Local control of blood flow in the heart is important yet poorly understood. Here we show that ATP-sensitive K channels (K), hugely abundant in cardiac ventricular myocytes, sense the local myocyte metabolic state and communicate a negative feedback signal-correction upstream electrically. This electro-metabolic voltage signal is transmitted instantaneously to cellular elements in the neighboring microvascular network through gap junctions, where it regulates contractile pericytes and smooth muscle cells and thus blood flow. As myocyte ATP is consumed in excess of production, [ATP] decreases to increase the openings of K channels, which biases the electrically active myocytes in the hyperpolarization (negative) direction. This change leads to relative hyperpolarization of the electrically connected cells that include capillary endothelial cells, pericytes, and vascular smooth muscle cells. Such hyperpolarization decreases pericyte and vascular smooth muscle [Ca] levels, thereby relaxing the contractile cells to increase local blood flow and delivery of nutrients to the local cardiac myocytes and to augment ATP production by their mitochondria. Our findings demonstrate the pivotal roles of local cardiac myocyte metabolism and K channels and the minor role of inward rectifier K (Kir2.1) channels in regulating blood flow in the heart. These findings establish a conceptually new framework for understanding the hugely reliable and incredibly robust local electro-metabolic microvascular regulation of blood flow in heart.

摘要

心脏局部血流控制很重要,但目前人们对此了解甚少。在这里,我们表明,在心肌细胞中大量存在的三磷酸腺苷(ATP)敏感性钾通道(K 通道)可以感知局部心肌代谢状态,并通过电信号向上游传递负反馈信号进行修正。这种电代谢电压信号通过缝隙连接瞬时传递到邻近微血管网络中的细胞成分,在那里它调节收缩型周细胞和平滑肌细胞,从而调节血流。当心肌细胞的 ATP 消耗超过产生时,[ATP] 减少会增加 K 通道的开放,使电活性心肌细胞向超极化(负)方向倾斜。这种变化导致包括毛细血管内皮细胞、周细胞和血管平滑肌细胞在内的电连接细胞发生相对超极化。这种超极化降低了周细胞和血管平滑肌细胞的[Ca]水平,从而使收缩型细胞松弛,增加局部血流和营养物质向局部心肌细胞的输送,并增加其线粒体的 ATP 产生。我们的研究结果表明,局部心肌细胞代谢和 K 通道在调节心脏血流中起着关键作用,而内向整流钾(Kir2.1)通道的作用较小。这些发现为理解心脏中血流的局部电代谢微血管调节提供了一个全新的概念框架,这种调节具有极高的可靠性和强大的稳定性。

相似文献

1
ATP- and voltage-dependent electro-metabolic signaling regulates blood flow in heart.
Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7461-7470. doi: 10.1073/pnas.1922095117. Epub 2020 Mar 13.
3
Effects of regular exercise on ventricular myocyte biomechanics and K channel function.
Am J Physiol Heart Circ Physiol. 2018 Oct 1;315(4):H885-H896. doi: 10.1152/ajpheart.00130.2018. Epub 2018 Aug 3.
5
Regulation of ATP-sensitive K+ channels by caveolin-enriched microdomains in cardiac myocytes.
Cardiovasc Res. 2009 Apr 1;82(1):51-8. doi: 10.1093/cvr/cvp039. Epub 2009 Jan 30.
6
Adenosine signaling activates ATP-sensitive K channels in endothelial cells and pericytes in CNS capillaries.
Sci Signal. 2022 Mar 29;15(727):eabl5405. doi: 10.1126/scisignal.abl5405.
7
Muscarinic suppression of ATP-sensitive K channels mediated by the M/G/phospholipase C pathway contributes to mouse ileal smooth muscle contractions.
Am J Physiol Gastrointest Liver Physiol. 2018 Oct 1;315(4):G618-G630. doi: 10.1152/ajpgi.00069.2018. Epub 2018 Jul 12.
9
Cardiac and vascular KATP channels in rats are activated by endogenous epoxyeicosatrienoic acids through different mechanisms.
J Physiol. 2006 Sep 1;575(Pt 2):627-44. doi: 10.1113/jphysiol.2006.113985. Epub 2006 Jun 22.
10
KCNJ8/ABCC9-containing K-ATP channel modulates brain vascular smooth muscle development and neurovascular coupling.
Dev Cell. 2022 Jun 6;57(11):1383-1399.e7. doi: 10.1016/j.devcel.2022.04.019. Epub 2022 May 18.

引用本文的文献

1
Pericytes in mouse heart.
Front Physiol. 2025 Jul 30;16:1631407. doi: 10.3389/fphys.2025.1631407. eCollection 2025.
2
Potassium as an electro-metabolic signal for local coronary vasodilation.
Basic Res Cardiol. 2025 Jun 25. doi: 10.1007/s00395-025-01126-9.
3
K channels and cardioprotection.
Arh Farm (Belgr). 2024;74(5):625-657. doi: 10.5937/arhfarm74-51604. Epub 2024 Nov 1.
4
Electrifying the brain capillary Ca signal.
Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2425994122. doi: 10.1073/pnas.2425994122. Epub 2025 Jan 21.
5
Do K channels have a role in immunity?
Front Immunol. 2024 Nov 28;15:1484971. doi: 10.3389/fimmu.2024.1484971. eCollection 2024.
6
Pericytes in the brain and heart: functional roles and response to ischaemia and reperfusion.
Cardiovasc Res. 2025 Apr 8;120(18):2336-2348. doi: 10.1093/cvr/cvae147.
7
Review of cardiac-coronary interaction and insights from mathematical modeling.
WIREs Mech Dis. 2024 May-Jun;16(3):e1642. doi: 10.1002/wsbm.1642. Epub 2024 Feb 5.
8
Electro-metabolic signaling.
J Gen Physiol. 2024 Feb 5;156(2). doi: 10.1085/jgp.202313451. Epub 2024 Jan 10.
9
The heterocellular heart: identities, interactions, and implications for cardiology.
Basic Res Cardiol. 2023 Jul 26;118(1):30. doi: 10.1007/s00395-023-01000-6.
10
Nonmyocytes as electrophysiological contributors to cardiac excitation and conduction.
Am J Physiol Heart Circ Physiol. 2023 Sep 1;325(3):H475-H491. doi: 10.1152/ajpheart.00184.2023. Epub 2023 Jul 7.

本文引用的文献

1
Ca Signalling in Pericytes.
Adv Exp Med Biol. 2018;1109:95-109. doi: 10.1007/978-3-030-02601-1_8.
2
Capillary pericytes mediate coronary no-reflow after myocardial ischaemia.
Elife. 2017 Nov 9;6:e29280. doi: 10.7554/eLife.29280.
3
Molecular and functional characterization of the endothelial ATP-sensitive potassium channel.
J Biol Chem. 2017 Oct 27;292(43):17587-17597. doi: 10.1074/jbc.M117.810325. Epub 2017 Sep 11.
4
Vascular Pericyte Impairment and Connexin43 Gap Junction Deficit Contribute to Vasomotor Decline in Diabetic Retinopathy.
J Neurosci. 2017 Aug 9;37(32):7580-7594. doi: 10.1523/JNEUROSCI.0187-17.2017. Epub 2017 Jul 3.
5
Regulation of Coronary Blood Flow.
Compr Physiol. 2017 Mar 16;7(2):321-382. doi: 10.1002/cphy.c160016.
6
Capillary K-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow.
Nat Neurosci. 2017 May;20(5):717-726. doi: 10.1038/nn.4533. Epub 2017 Mar 20.
7
K channel inhibition blunts electromechanical decline during hypoxia in left ventricular working rabbit hearts.
J Physiol. 2017 Jun 15;595(12):3799-3813. doi: 10.1113/JP273873. Epub 2017 Mar 13.
8
STIM1 enhances SR Ca2+ content through binding phospholamban in rat ventricular myocytes.
Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):E4792-801. doi: 10.1073/pnas.1423295112. Epub 2015 Aug 10.
9
Requisite Role of Kv1.5 Channels in Coronary Metabolic Dilation.
Circ Res. 2015 Sep 11;117(7):612-621. doi: 10.1161/CIRCRESAHA.115.306642. Epub 2015 Jul 29.
10
Capillary pericytes regulate cerebral blood flow in health and disease.
Nature. 2014 Apr 3;508(7494):55-60. doi: 10.1038/nature13165. Epub 2014 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验