Suppr超能文献

生物钟影响拟南芥的长期水分利用效率。

The Circadian Clock Influences the Long-Term Water Use Efficiency of Arabidopsis.

机构信息

School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom.

John Innes Centre, Norwich NR4 7UH, United Kingdom.

出版信息

Plant Physiol. 2020 May;183(1):317-330. doi: 10.1104/pp.20.00030. Epub 2020 Mar 16.

Abstract

In plants, water use efficiency (WUE) is a complex trait arising from numerous physiological and developmental characteristics. Here, we investigated the involvement of circadian regulation in long-term WUE in Arabidopsis () under light and dark conditions. Circadian rhythms are generated by the circadian oscillator, which provides a cellular measure of the time of day. In plants, the circadian oscillator contributes to the regulation of many aspects of physiology, including stomatal opening, rate of photosynthesis, carbohydrate metabolism, and developmental processes such as the initiation of flowering. We investigated the impact of the misregulation of numerous genes encoding various components of the circadian oscillator on whole plant, long-term WUE. From this analysis, we identified a role for the circadian oscillator in WUE. It appears that the circadian clock contributes to the control of transpiration and biomass accumulation. We also established that the circadian oscillator within guard cells can contribute to long-term WUE. Our experiments indicate that knowledge of circadian regulation will be important for developing crops with improved WUE.

摘要

在植物中,水分利用效率(WUE)是一个由众多生理和发育特征共同作用的复杂性状。在这里,我们研究了生物钟调节在拟南芥(Arabidopsis)在光暗条件下长期 WUE 中的作用。生物钟节律由生物钟振荡器产生,它为细胞提供了一天时间的度量。在植物中,生物钟振荡器有助于调节许多生理方面,包括气孔开度、光合作用速率、碳水化合物代谢以及发育过程,如开花的启动。我们研究了许多编码生物钟振荡器各种组成部分的基因失调对整个植物长期 WUE 的影响。从这项分析中,我们确定了生物钟振荡器在 WUE 中的作用。看来生物钟时钟有助于控制蒸腾和生物量积累。我们还确定了保卫细胞内的生物钟振荡器可以促进长期 WUE。我们的实验表明,生物钟调节的知识对于开发具有更高 WUE 的作物将是重要的。

相似文献

1
The Circadian Clock Influences the Long-Term Water Use Efficiency of Arabidopsis.
Plant Physiol. 2020 May;183(1):317-330. doi: 10.1104/pp.20.00030. Epub 2020 Mar 16.
2
() and the Circadian Control of Stomatal Aperture.
Plant Physiol. 2017 Dec;175(4):1864-1877. doi: 10.1104/pp.17.01214. Epub 2017 Oct 30.
3
Assessing the Impact of Photosynthetic Sugars on the Arabidopsis Circadian Clock.
Methods Mol Biol. 2016;1398:133-40. doi: 10.1007/978-1-4939-3356-3_12.
4
Photosynthetic entrainment of the Arabidopsis thaliana circadian clock.
Nature. 2013 Oct 31;502(7473):689-92. doi: 10.1038/nature12603. Epub 2013 Oct 23.
5
The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose.
Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):5104-9. doi: 10.1073/pnas.1015452108. Epub 2011 Mar 7.
6
Proteasomal regulation of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) stability is part of the complex control of CCA1.
Plant Signal Behav. 2013 Mar;8(3):e23206. doi: 10.4161/psb.23206. Epub 2013 Jan 8.
7
A circadian clock-regulated toggle switch explains AtGRP7 and AtGRP8 oscillations in Arabidopsis thaliana.
PLoS Comput Biol. 2013;9(3):e1002986. doi: 10.1371/journal.pcbi.1002986. Epub 2013 Mar 28.
8
A methyl transferase links the circadian clock to the regulation of alternative splicing.
Nature. 2010 Nov 4;468(7320):112-6. doi: 10.1038/nature09470. Epub 2010 Oct 20.
9
LNK genes integrate light and clock signaling networks at the core of the Arabidopsis oscillator.
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):12120-5. doi: 10.1073/pnas.1302170110. Epub 2013 Jul 1.
10
Attenuated TOR signaling lengthens circadian period in .
Plant Signal Behav. 2020;15(2):1710935. doi: 10.1080/15592324.2019.1710935. Epub 2020 Jan 7.

引用本文的文献

1
Using plant circadian programs to optimize agrochemical use.
New Phytol. 2025 Sep;247(6):2557-2563. doi: 10.1111/nph.70346. Epub 2025 Jun 29.
3
Variations of floral temperature in changing weather conditions.
Ecol Evol. 2024 Jun 30;14(7):e11651. doi: 10.1002/ece3.11651. eCollection 2024 Jul.
4
Effects of Extended Light/Dark Cycles on Solanaceae Plants.
Plants (Basel). 2024 Jan 15;13(2):244. doi: 10.3390/plants13020244.
5
Circadian clock factors regulate the first condensation reaction of fatty acid synthesis in Arabidopsis.
Cell Rep. 2023 Dec 26;42(12):113483. doi: 10.1016/j.celrep.2023.113483. Epub 2023 Nov 22.
6
Atmospheric CO2 decline and the timing of CAM plant evolution.
Ann Bot. 2023 Nov 25;132(4):753-770. doi: 10.1093/aob/mcad122.
8
Current status and future challenges in implementing and upscaling vertical farming systems.
Nat Food. 2021 Dec;2(12):944-956. doi: 10.1038/s43016-021-00402-w. Epub 2021 Dec 6.
10
Light, rather than circadian rhythm, regulates gas exchange in ferns and lycophytes.
Plant Physiol. 2023 Mar 17;191(3):1634-1647. doi: 10.1093/plphys/kiad036.

本文引用的文献

1
Stomatal development and CO : ecological consequences.
New Phytol. 2002 Mar;153(3):477-484. doi: 10.1046/j.0028-646X.2001.00338.x. Epub 2002 Mar 5.
2
Natural variation of life-history traits, water use, and drought responses in Arabidopsis.
Plant Direct. 2018 Feb 1;2(1):e00035. doi: 10.1002/pld3.35. eCollection 2018 Jan.
3
Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World.
Front Plant Sci. 2019 Mar 6;10:225. doi: 10.3389/fpls.2019.00225. eCollection 2019.
4
Continuous dynamic adjustment of the plant circadian oscillator.
Nat Commun. 2019 Feb 1;10(1):550. doi: 10.1038/s41467-019-08398-5.
5
Photosynthesis and circadian rhythms regulate the buoyancy of marimo lake balls.
Curr Biol. 2018 Aug 20;28(16):R869-R870. doi: 10.1016/j.cub.2018.07.027.
6
Circadian Entrainment in Arabidopsis by the Sugar-Responsive Transcription Factor bZIP63.
Curr Biol. 2018 Aug 20;28(16):2597-2606.e6. doi: 10.1016/j.cub.2018.05.092. Epub 2018 Aug 2.
7
8
Circadian rhythms are associated with shoot architecture in natural settings.
New Phytol. 2018 Jul;219(1):246-258. doi: 10.1111/nph.15162. Epub 2018 Apr 19.
9
Involvement of the SnRK1 subunit KIN10 in sucrose-induced hypocotyl elongation.
Plant Signal Behav. 2018;13(6):e1457913. doi: 10.1080/15592324.2018.1457913. Epub 2018 May 30.
10
STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) Interacts with Protein Kinase SnRK1.
Plant Physiol. 2018 Feb;176(2):1773-1792. doi: 10.1104/pp.17.01461. Epub 2017 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验