Suppr超能文献

抗 CRISPR 蛋白:CRISPR-Cas 系统的蛋白抑制剂。

Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems.

机构信息

Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; email:

Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada; email:

出版信息

Annu Rev Biochem. 2020 Jun 20;89:309-332. doi: 10.1146/annurev-biochem-011420-111224. Epub 2020 Mar 18.

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR) together with their accompanying (CRISPR-associated) genes are found frequently in bacteria and archaea, serving to defend against invading foreign DNA, such as viral genomes. CRISPR-Cas systems provide a uniquely powerful defense because they can adapt to newly encountered genomes. The adaptive ability of these systems has been exploited, leading to their development as highly effective tools for genome editing. The widespread use of CRISPR-Cas systems has driven a need for methods to control their activity. This review focuses on anti-CRISPRs (Acrs), proteins produced by viruses and other mobile genetic elements that can potently inhibit CRISPR-Cas systems. Discovered in 2013, there are now 54 distinct families of these proteins described, and the functional mechanisms of more than a dozen have been characterized in molecular detail. The investigation of Acrs is leading to a variety of practical applications and is providing exciting new insight into the biology of CRISPR-Cas systems.

摘要

成簇规律间隔短回文重复序列(CRISPR)及其伴随的(CRISPR 相关)基因在细菌和古菌中频繁存在,用于防御入侵的外源 DNA,如病毒基因组。CRISPR-Cas 系统提供了一种独特而强大的防御机制,因为它们可以适应新遇到的基因组。这些系统的适应性已被开发利用,导致它们成为高效的基因组编辑工具。CRISPR-Cas 系统的广泛应用推动了对控制其活性的方法的需求。本综述重点介绍抗 CRISPR(Acrs),即由病毒和其他移动遗传元件产生的蛋白质,它们可以有效地抑制 CRISPR-Cas 系统。这些蛋白质在 2013 年被发现,目前已经描述了 54 种不同的家族,并且已经对十几个家族的功能机制进行了分子细节的描述。对 Acrs 的研究正在导致各种实际应用,并为 CRISPR-Cas 系统的生物学提供了令人兴奋的新见解。

相似文献

1
Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems.
Annu Rev Biochem. 2020 Jun 20;89:309-332. doi: 10.1146/annurev-biochem-011420-111224. Epub 2020 Mar 18.
2
Type II anti-CRISPR proteins as a new tool for synthetic biology.
RNA Biol. 2021 Aug;18(8):1085-1098. doi: 10.1080/15476286.2020.1827803. Epub 2020 Oct 13.
3
Anti-CRISPR proteins targeting the CRISPR-Cas system enrich the toolkit for genetic engineering.
FEBS J. 2020 Feb;287(4):626-644. doi: 10.1111/febs.15139. Epub 2019 Nov 29.
4
Meet the Anti-CRISPRs: Widespread Protein Inhibitors of CRISPR-Cas Systems.
CRISPR J. 2019 Feb;2(1):23-30. doi: 10.1089/crispr.2018.0052.
5
Anti-CRISPR proteins: Counterattack of phages on bacterial defense (CRISPR/Cas) system.
J Cell Physiol. 2018 Jan;233(1):57-59. doi: 10.1002/jcp.25877. Epub 2017 May 8.
6
Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
Mol Cell. 2017 Jul 6;67(1):117-127.e5. doi: 10.1016/j.molcel.2017.05.024. Epub 2017 Jun 9.
8
The Discovery, Mechanisms, and Evolutionary Impact of Anti-CRISPRs.
Annu Rev Virol. 2017 Sep 29;4(1):37-59. doi: 10.1146/annurev-virology-101416-041616. Epub 2017 Jul 27.
9
The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit.
Mol Cell. 2017 Oct 5;68(1):15-25. doi: 10.1016/j.molcel.2017.09.007.
10
Editor's cut: DNA cleavage by CRISPR RNA-guided nucleases Cas9 and Cas12a.
Biochem Soc Trans. 2020 Feb 28;48(1):207-219. doi: 10.1042/BST20190563.

引用本文的文献

2
The extended mobility of plasmids.
Nucleic Acids Res. 2025 Jul 19;53(14). doi: 10.1093/nar/gkaf652.
3
A census of anti-CRISPR proteins reveals AcrIE9 as an inhibitor of K12 Type IE CRISPR-Cas system.
bioRxiv. 2025 May 10:2025.05.07.652737. doi: 10.1101/2025.05.07.652737.
4
Synthetic CRISPR Networks Driven by Transcription Factors via Structure-Switching DNA Translators.
J Am Chem Soc. 2025 Jun 18;147(24):21184-21193. doi: 10.1021/jacs.5c06913. Epub 2025 Jun 9.
5
AcrDB update: Predicted 3D structures of anti-CRISPRs in human gut viromes.
Protein Sci. 2025 Jun;34(6):e70177. doi: 10.1002/pro.70177.
6
Mechanism of Cas9 inhibition by AcrIIA11.
Nucleic Acids Res. 2025 Apr 22;53(8). doi: 10.1093/nar/gkaf318.
7
Advancing RNA phage biology through meta-omics.
Nucleic Acids Res. 2025 Apr 22;53(8). doi: 10.1093/nar/gkaf314.
8
Bacteriophages: A Challenge for Antimicrobial Therapy.
Microorganisms. 2025 Jan 7;13(1):100. doi: 10.3390/microorganisms13010100.
10
Nucleic acid recognition during prokaryotic immunity.
Mol Cell. 2025 Jan 16;85(2):309-322. doi: 10.1016/j.molcel.2024.12.007.

本文引用的文献

1
Anti-CRISPR-Associated Proteins Are Crucial Repressors of Anti-CRISPR Transcription.
Cell. 2019 Sep 5;178(6):1452-1464.e13. doi: 10.1016/j.cell.2019.07.046. Epub 2019 Aug 29.
2
Tissue-restricted genome editing in vivo specified by microRNA-repressible anti-CRISPR proteins.
RNA. 2019 Nov;25(11):1421-1431. doi: 10.1261/rna.071704.119. Epub 2019 Aug 22.
3
Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a.
Elife. 2019 Aug 9;8:e49110. doi: 10.7554/eLife.49110.
5
Cell-Type-Specific CRISPR Activation with MicroRNA-Responsive AcrllA4 Switch.
ACS Synth Biol. 2019 Jul 19;8(7):1575-1582. doi: 10.1021/acssynbio.9b00073. Epub 2019 Jul 9.
6
Inhibition of CRISPR-Cas9 ribonucleoprotein complex assembly by anti-CRISPR AcrIIC2.
Nat Commun. 2019 Jun 26;10(1):2806. doi: 10.1038/s41467-019-10577-3.
7
Structural Basis for the Inhibition of CRISPR-Cas12a by Anti-CRISPR Proteins.
Cell Host Microbe. 2019 Jun 12;25(6):815-826.e4. doi: 10.1016/j.chom.2019.05.004. Epub 2019 May 30.
8
Production of CRISPR/Cas9-Mediated Self-Cleaving Helper-Dependent Adenoviruses.
Mol Ther Methods Clin Dev. 2019 Apr 16;13:432-439. doi: 10.1016/j.omtm.2019.04.003. eCollection 2019 Jun 14.
9
A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9.
Cell. 2019 May 2;177(4):1067-1079.e19. doi: 10.1016/j.cell.2019.04.009.
10
A Unified Resource for Tracking Anti-CRISPR Names.
CRISPR J. 2018 Oct;1(5):304-305. doi: 10.1089/crispr.2018.0043.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验