Suppr超能文献

基于一次性塑料模板的可调谐 Fano 共振超表面用于多模态和多重生物传感。

Tunable Fano-Resonant Metasurfaces on a Disposable Plastic-Template for Multimodal and Multiplex Biosensing.

机构信息

Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA.

Division of Experimental Medicine, University of California, 1001 Potrero Avenue, San Francisco, CA, 94110, USA.

出版信息

Adv Mater. 2020 May;32(19):e1907160. doi: 10.1002/adma.201907160. Epub 2020 Mar 23.

Abstract

Metasurfaces are engineered nanostructured interfaces that extend the photonic behavior of natural materials, and they spur many breakthroughs in multiple fields, including quantum optics, optoelectronics, and biosensing. Recent advances in metasurface nanofabrication enable precise manipulation of light-matter interactions at subwavelength scales. However, current fabrication methods are costly and time-consuming and have a small active area with low reproducibility due to limitations in lithography, where sensing nanosized rare biotargets requires a wide active surface area for efficient binding and detection. Here, a plastic-templated tunable metasurface with a large active area and periodic metal-dielectric layers to excite plasmonic Fano resonance transitions providing multimodal and multiplex sensing of small biotargets, such as proteins and viruses, is introduced. The tunable Fano resonance feature of the metasurface is enabled via chemical etching steps to manage nanoperiodicity of the plastic template decorated with plasmonic layers and surrounding dielectric medium. This metasurface integrated with microfluidics further enhances the light-matter interactions over a wide sensing area, extending data collection from 3D to 4D by tracking real-time biomolecular binding events. Overall, this work resolves cost- and complexity-related large-scale fabrication challenges and improves multilayer sensitivity of detection in biosensing applications.

摘要

超构表面是一种经过工程设计的纳米结构界面,可以扩展天然材料的光子行为,在多个领域引发了许多突破,包括量子光学、光电学和生物传感。超构表面纳米制造的最新进展使得能够在亚波长尺度上精确控制光物质相互作用。然而,由于光刻的限制,当前的制造方法成本高、耗时且活性面积小,重复性低,其中,要感测纳米级的稀有生物靶标,需要一个大的活性表面来实现高效结合和检测。在这里,引入了一种具有大的活性面积和周期性金属-电介质层的塑料模板可调谐超构表面,以激发等离子体 Fano 共振跃迁,从而实现对小生物靶标(如蛋白质和病毒)的多模态和多路复用传感。通过化学刻蚀步骤来管理涂有等离子体层和周围介电介质的塑料模板的纳米周期性,从而实现超构表面可调谐的 Fano 共振特性。这种与微流控技术集成的超构表面进一步增强了宽传感区域的光物质相互作用,通过跟踪实时生物分子结合事件,将数据采集从 3D 扩展到 4D。总的来说,这项工作解决了与成本和复杂性相关的大规模制造挑战,并提高了生物传感应用中的多层检测灵敏度。

相似文献

1
Tunable Fano-Resonant Metasurfaces on a Disposable Plastic-Template for Multimodal and Multiplex Biosensing.
Adv Mater. 2020 May;32(19):e1907160. doi: 10.1002/adma.201907160. Epub 2020 Mar 23.
2
Large-Scale Functionalized Metasurface-Based SARS-CoV-2 Detection and Quantification.
ACS Nano. 2022 Oct 25;16(10):15946-15958. doi: 10.1021/acsnano.2c02500. Epub 2022 Sep 20.
3
5
Wafer-Scale Functional Metasurfaces for Mid-Infrared Photonics and Biosensing.
Adv Mater. 2021 Oct;33(43):e2102232. doi: 10.1002/adma.202102232. Epub 2021 Sep 7.
6
Exploring near-field sensing efficiency of complementary plasmonic metasurfaces for immunodetection of tumor markers.
Biosens Bioelectron. 2022 May 1;203:114038. doi: 10.1016/j.bios.2022.114038. Epub 2022 Jan 26.
7
Towards scalable plasmonic Fano-resonant metasurfaces for colorimetric sensing.
Nanotechnology. 2022 Jul 11;33(40). doi: 10.1088/1361-6528/ac7b33.
8
Monolayer graphene sensing enabled by the strong Fano-resonant metasurface.
Nanoscale. 2016 Oct 6;8(39):17278-17284. doi: 10.1039/c6nr01911k.
9
Near-infrared plasmonic sensing and digital metasurface via double Fano resonances.
Opt Express. 2022 Feb 14;30(4):5879-5895. doi: 10.1364/OE.452134.
10
Dielectric Resonance-Based Optical Metasurfaces: From Fundamentals to Applications.
iScience. 2020 Nov 26;23(12):101868. doi: 10.1016/j.isci.2020.101868. eCollection 2020 Dec 18.

引用本文的文献

3
An ultrasensitive angular interrogation metasurface sensor based on the TE mode surface lattice resonance.
Microsyst Nanoeng. 2025 Jan 8;11(1):1. doi: 10.1038/s41378-024-00848-5.
4
MicroMetaSense: Coupling Plasmonic Metasurfaces with Fluorescence for Enhanced Detection of Microplastics in Real Samples.
ACS Sens. 2025 Feb 28;10(2):725-740. doi: 10.1021/acssensors.4c02070. Epub 2024 Dec 27.
5
Recent Advancements in Nanophotonics for Optofluidics.
Adv Phys X. 2024;9(1). doi: 10.1080/23746149.2024.2416178. Epub 2024 Oct 22.
6
Recent Progress in Molecular Probes for Imaging of Acute Kidney Injury.
Chem Biomed Imaging. 2024 May 1;2(8):526-541. doi: 10.1021/cbmi.4c00024. eCollection 2024 Aug 26.
8
High-performance grating-like SERS substrate based on machine learning for ultrasensitive detection of Zexie-Baizhu decoction.
Heliyon. 2024 Apr 30;10(9):e30499. doi: 10.1016/j.heliyon.2024.e30499. eCollection 2024 May 15.
9
A review on plasmonic and metamaterial based biosensing platforms for virus detection.
Sens Biosensing Res. 2021 Aug;33:100429. doi: 10.1016/j.sbsr.2021.100429. Epub 2021 May 20.
10
Advancing 3D printed microfluidics with computational methods for sweat analysis.
Mikrochim Acta. 2024 Feb 27;191(3):162. doi: 10.1007/s00604-024-06231-5.

本文引用的文献

1
From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces.
Adv Mater. 2019 Apr;31(16):e1802458. doi: 10.1002/adma.201802458. Epub 2019 Feb 14.
3
Polarization Encoded Color Image Embedded in a Dielectric Metasurface.
Adv Mater. 2018 May;30(21):e1707499. doi: 10.1002/adma.201707499. Epub 2018 Mar 30.
5
Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces.
Nat Nanotechnol. 2017 Jul;12(7):675-683. doi: 10.1038/nnano.2017.50. Epub 2017 Apr 17.
6
Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color.
Adv Mater. 2016 Dec;28(45):9956-9960. doi: 10.1002/adma.201603358. Epub 2016 Sep 27.
7
Colloidal Synthesis and Applications of Plasmonic Metal Nanoparticles.
Adv Mater. 2016 Dec;28(47):10508-10517. doi: 10.1002/adma.201601739. Epub 2016 Sep 13.
8
An ultrathin invisibility skin cloak for visible light.
Science. 2015 Sep 18;349(6254):1310-4. doi: 10.1126/science.aac9411.
9
Graphene-Gold Metasurface Architectures for Ultrasensitive Plasmonic Biosensing.
Adv Mater. 2015 Oct 28;27(40):6163-9. doi: 10.1002/adma.201501754. Epub 2015 Sep 9.
10
Disposable Plasmonics: Plastic Templated Plasmonic Metamaterials with Tunable Chirality.
Adv Mater. 2015 Oct 7;27(37):5610-6. doi: 10.1002/adma.201501816. Epub 2015 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验