Suppr超能文献

利用数字下一代测序技术检测胰腺癌患者的循环肿瘤 DNA。

Detection of Circulating Tumor DNA in Patients with Pancreatic Cancer Using Digital Next-Generation Sequencing.

机构信息

Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland.

Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland.

出版信息

J Mol Diagn. 2020 Jun;22(6):748-756. doi: 10.1016/j.jmoldx.2020.02.010. Epub 2020 Mar 20.

Abstract

Circulating tumor DNA (ctDNA) measurements can be used to estimate tumor burden, but avoiding false-positive results is challenging. Herein, digital next-generation sequencing (NGS) is evaluated as a ctDNA detection method. Plasma KRAS and GNAS hotspot mutation levels were measured in 140 subjects, including 67 with pancreatic ductal adenocarcinoma and 73 healthy and disease controls. To limit chemical modifications of DNA that yield false-positive mutation calls, plasma DNA was enzymatically pretreated, after which DNA was aliquoted for digital detection of mutations (up to 384 aliquots/sample) by PCR and NGS. A digital NGS score of two SDs above the mean in controls was considered positive. Thirty-seven percent of patients with pancreatic cancer, including 31% of patients with stages I/II disease, had positive KRAS codon 12 ctDNA scores; only one patient had a positive GNAS mutation score. Two disease control patients had positive ctDNA scores. Low-normal-range digital NGS scores at mutation hotspots were found at similar levels in healthy and disease controls, usually at sites of cytosine deamination, and were likely the result of chemical modification of plasma DNA and NGS error rather than true mutations. Digital NGS detects mutated ctDNA in patients with pancreatic cancer with similar yield to other methods. Detection of low-level, true-positive ctDNA is limited by frequent low-level detection of false-positive mutation calls in plasma DNA from controls.

摘要

循环肿瘤 DNA(ctDNA)测量可用于估计肿瘤负担,但避免假阳性结果具有挑战性。在此,评估数字下一代测序(NGS)作为 ctDNA 检测方法。对 140 名受试者的血浆 KRAS 和 GNAS 热点突变水平进行了测量,其中包括 67 名胰腺导管腺癌患者和 73 名健康和疾病对照者。为了限制产生假阳性突变检测的 DNA 化学修饰,对血浆 DNA 进行酶预处理,然后将 DNA 等分用于通过 PCR 和 NGS 对突变进行数字检测(每个样品最多 384 个等分物)。将对照中平均值以上两个标准差的数字 NGS 评分视为阳性。37%的胰腺癌患者,包括 31%的 I/II 期疾病患者,KRAS 密码子 12 ctDNA 评分阳性;只有一名患者 GNAS 突变评分阳性。两名疾病对照患者的 ctDNA 评分阳性。在健康和疾病对照者中,通常在胞嘧啶脱氨酶部位,在突变热点处发现数字 NGS 评分处于低正常范围,这可能是由于血浆 DNA 的化学修饰和 NGS 错误,而不是真正的突变导致的。数字 NGS 与其他方法一样,在胰腺癌患者中检测到突变的 ctDNA。由于在来自对照者的血浆 DNA 中经常检测到低水平的假阳性突变检测,因此检测低水平的真正阳性 ctDNA 受到限制。

相似文献

1
Detection of Circulating Tumor DNA in Patients with Pancreatic Cancer Using Digital Next-Generation Sequencing.
J Mol Diagn. 2020 Jun;22(6):748-756. doi: 10.1016/j.jmoldx.2020.02.010. Epub 2020 Mar 20.
2
Mutant Circulating Tumor DNA Is an Accurate Tool for Pancreatic Cancer Monitoring.
Oncologist. 2018 May;23(5):566-572. doi: 10.1634/theoncologist.2017-0467. Epub 2018 Jan 25.
4
Digital PCR-based plasma cell-free DNA mutation analysis for early-stage pancreatic tumor diagnosis and surveillance.
J Gastroenterol. 2020 Dec;55(12):1183-1193. doi: 10.1007/s00535-020-01724-5. Epub 2020 Sep 16.
6
Clinical correlates of blood-derived circulating tumor DNA in pancreatic cancer.
J Hematol Oncol. 2019 Dec 4;12(1):130. doi: 10.1186/s13045-019-0824-4.
8
KRAS mutations in blood circulating cell-free DNA: a pancreatic cancer case-control.
Oncotarget. 2016 Nov 29;7(48):78827-78840. doi: 10.18632/oncotarget.12386.

引用本文的文献

1
Cell free RNA detection of pancreatic cancer in pre diagnostic high risk and symptomatic patients.
Nat Commun. 2025 Aug 9;16(1):7345. doi: 10.1038/s41467-025-62685-y.
2
Evolution of Liquid Biopsies for Detecting Pancreatic Cancer.
Cancers (Basel). 2024 Sep 29;16(19):3335. doi: 10.3390/cancers16193335.
3
Early detection of pancreatic cancer in the era of precision medicine.
Abdom Radiol (NY). 2024 Oct;49(10):3559-3573. doi: 10.1007/s00261-024-04358-w. Epub 2024 May 18.
4
Progresses in biomarkers for cancer immunotherapy.
MedComm (2020). 2023 Oct 3;4(5):e387. doi: 10.1002/mco2.387. eCollection 2023 Oct.
5
Screening for pancreatic cancer has the potential to save lives, but is it practical?
Expert Rev Gastroenterol Hepatol. 2023 Jan-Jun;17(6):555-574. doi: 10.1080/17474124.2023.2217354. Epub 2023 Jul 3.
8
Pancreatic Cancer: Changing Epidemiology and New Approaches to Risk Assessment, Early Detection, and Prevention.
Gastroenterology. 2023 Apr;164(5):752-765. doi: 10.1053/j.gastro.2023.02.012. Epub 2023 Feb 18.

本文引用的文献

2
Genome-wide cell-free DNA fragmentation in patients with cancer.
Nature. 2019 Jun;570(7761):385-389. doi: 10.1038/s41586-019-1272-6. Epub 2019 May 29.
3
Multilaboratory Assessment of a New Reference Material for Quality Assurance of Cell-Free Tumor DNA Measurements.
J Mol Diagn. 2019 Jul;21(4):658-676. doi: 10.1016/j.jmoldx.2019.03.006. Epub 2019 May 2.
4
Enhanced detection of circulating tumor DNA by fragment size analysis.
Sci Transl Med. 2018 Nov 7;10(466). doi: 10.1126/scitranslmed.aat4921.
6
Circulating Nucleic Acids Are Associated With Outcomes of Patients With Pancreatic Cancer.
Gastroenterology. 2019 Jan;156(1):108-118.e4. doi: 10.1053/j.gastro.2018.09.022. Epub 2018 Sep 19.
8
Risk of Neoplastic Progression in Individuals at High Risk for Pancreatic Cancer Undergoing Long-term Surveillance.
Gastroenterology. 2018 Sep;155(3):740-751.e2. doi: 10.1053/j.gastro.2018.05.035. Epub 2018 May 24.
9
Genome-Wide Somatic Copy Number Alterations and Mutations in High-Grade Pancreatic Intraepithelial Neoplasia.
Am J Pathol. 2018 Jul;188(7):1723-1733. doi: 10.1016/j.ajpath.2018.03.012. Epub 2018 Apr 22.
10
Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations.
Nat Rev Genet. 2018 May;19(5):269-285. doi: 10.1038/nrg.2017.117. Epub 2018 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验