Suppr超能文献

结合认知标志物识别痴呆风险增加的个体:修饰因素的影响和诊断时间。

Combining Cognitive Markers to Identify Individuals at Increased Dementia Risk: Influence of Modifying Factors and Time to Diagnosis.

机构信息

Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden.

Stockholm Gerontology Research Center, Stockholm, Sweden.

出版信息

J Int Neuropsychol Soc. 2020 Sep;26(8):785-797. doi: 10.1017/S1355617720000272. Epub 2020 Mar 24.

Abstract

OBJECTIVE

We investigated the extent to which combining cognitive markers increases the predictive value for future dementia, when compared to individual markers. Furthermore, we examined whether predictivity of markers differed depending on a range of modifying factors and time to diagnosis.

METHOD

Neuropsychological assessment was performed for 2357 participants (60+ years) without dementia from the population-based Swedish National Study on Aging and Care in Kungsholmen. In the main sample analyses, the outcome was dementia at 6 years. In the time-to-diagnosis analyses, a subsample of 407 participants underwent cognitive testing 12, 6, and 3 years before diagnosis, with dementia diagnosis at the 12-year follow-up.

RESULTS

Category fluency was the strongest individual predictor of dementia 6 years before diagnosis [area under the curve (AUC) = .903]. The final model included tests of verbal fluency, episodic memory, and perceptual speed (AUC = .913); these three domains were found to be the most predictive across a range of different subgroups. Twelve years before diagnosis, pattern comparison (perceptual speed) was the strongest individual predictor (AUC = .686). However, models 12 years before diagnosis did not show significantly increased predictivity above that of the covariates.

CONCLUSIONS

This study shows that combining markers from different cognitive domains leads to increased accuracy in predicting future dementia 6 years later. Markers from the verbal fluency, episodic memory, and perceptual speed domains consistently showed high predictivity across subgroups stratified by age, sex, education, apolipoprotein E ϵ4 status, and dementia type. Predictivity increased closer to diagnosis and showed highest accuracy up to 6 years before a dementia diagnosis. (JINS, 2020, 00, 1-13).

摘要

目的

我们研究了与单个标志物相比,结合认知标志物在多大程度上增加了对未来痴呆的预测价值。此外,我们还研究了标志物的预测能力是否因一系列修正因素和诊断时间的不同而有所不同。

方法

在人口基础上的瑞典 Kungsholmen 老龄化和护理全国研究中,对 2357 名无痴呆的 60 岁以上参与者进行了神经心理学评估。在主要样本分析中,结果为 6 年后的痴呆。在诊断时间分析中,407 名参与者的子样本在诊断前 12、6 和 3 年接受了认知测试,12 年随访时诊断为痴呆。

结果

类别流畅性是诊断前 6 年痴呆的最强单项预测指标[曲线下面积(AUC)=.903]。最终模型包括语言流畅性、情景记忆和知觉速度测试(AUC =.913);这三个领域在一系列不同的亚组中被发现是最具预测性的。诊断前 12 年,模式比较(知觉速度)是最强的单项预测指标(AUC =.686)。然而,诊断前 12 年的模型并没有显示出比协变量更高的预测能力的显著增加。

结论

本研究表明,结合来自不同认知领域的标志物可提高 6 年后预测未来痴呆的准确性。来自语言流畅性、情景记忆和知觉速度领域的标志物在按年龄、性别、教育程度、载脂蛋白 E ϵ4 状态和痴呆类型分层的亚组中具有较高的预测能力。预测能力随着诊断时间的临近而增加,在诊断前 6 年达到最高准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验