Suppr超能文献

人畜共患病:“同一健康”方法下抗生素耐药性的新关联

Zoonosis: An Emerging Link to Antibiotic Resistance Under "One Health Approach".

作者信息

Dafale Nishant A, Srivastava Shweta, Purohit Hemant J

机构信息

CSIR-National Environmental Engineering Research Institute, Nagpur, 440 020 India.

出版信息

Indian J Microbiol. 2020 Jun;60(2):139-152. doi: 10.1007/s12088-020-00860-z. Epub 2020 Mar 4.

Abstract

Current scenario in communicable diseases has generated new era that identifies the "One health" approach to understand the sharing and management of etiological agents with its impact on ecosystem. Under this context the relevance of zoonotic diseases generates major concern. The indiscriminate and higher use of antibiotics in animal husbandry creates substantial pressure on the gut microbiome for development of resistance due to shorter generation time and high density. Thus, gut works as a bioreactor for the breeding of ARBs in this scenario and are continuously released in different niches. These ARBs transfer resistance genes among native flora through horizontal gene transfer events, vectors and quorum sensing. About 60% of infectious diseases in human are caused by zoonotic pathogens have potential to carry ARGs which could be transmitted to humans. The well documented zoonotic diseases are anthrax cause by , bovine tuberculosis by , brucellosis by , and hemorrhagic colitis by . Similarly, most of the antibiotics are not completely metabolized and released in unmetabolized forms which enters the food chain and affect various ecological niches through bioaccumulation. The persistence period of antibiotics ranges from < 1 to 3466 days in environment. The consequences of misusing the antibiotic in livestock and their fate in various ecological niches have been discussed in this review. Further the light sheds on antibiotics persistence and it biodegradation through different abiotic and biotic approaches in environment. The knowledge on personnel hygiene and strong surveillance system for zoonotic disease including ARBs transmission, prevention and control measures should be established to regulate the spread of AMR in the environment and subsequently to the human being through a food web.

摘要

当前传染病的形势开创了一个新时代,该时代确定了“同一健康”方法,以了解病原体的共享和管理及其对生态系统的影响。在此背景下,人畜共患病的相关性引发了重大关注。畜牧业中抗生素的滥用和大量使用,由于动物世代时间短和密度高,给肠道微生物群带来了巨大的耐药性发展压力。因此,在这种情况下,肠道就像一个生物反应器,用于繁殖抗生素耐药菌,并不断释放到不同的生态位中。这些抗生素耐药菌通过水平基因转移事件、载体和群体感应在本地菌群之间转移耐药基因。人类约60%的传染病是由人畜共患病原体引起的,这些病原体有可能携带可传播给人类的耐药基因。有充分记录的人畜共患病有炭疽(由……引起)、牛结核病(由……引起)、布鲁氏菌病(由……引起)和出血性结肠炎(由……引起)。同样地,大多数抗生素不能完全代谢,会以未代谢的形式释放出来,进入食物链,并通过生物累积影响各种生态位。抗生素在环境中的持续时间从小于1天到3466天不等。本综述讨论了在牲畜中滥用抗生素的后果及其在各种生态位中的归宿。此外,还介绍了抗生素在环境中的持久性及其通过不同的非生物和生物方法进行的生物降解。应建立关于个人卫生的知识以及针对人畜共患病(包括抗生素耐药菌传播)的强大监测系统、预防和控制措施,以规范抗生素耐药性在环境中的传播,并随后通过食物网传播给人类。

相似文献

1
Zoonosis: An Emerging Link to Antibiotic Resistance Under "One Health Approach".
Indian J Microbiol. 2020 Jun;60(2):139-152. doi: 10.1007/s12088-020-00860-z. Epub 2020 Mar 4.
2
4
Antibiotic resistance in grass and soil.
Biochem Soc Trans. 2019 Feb 28;47(1):477-486. doi: 10.1042/BST20180552. Epub 2019 Feb 19.
7
Screening food-borne and zoonotic pathogens associated with livestock practices in the Sumapaz region, Cundinamarca, Colombia.
Trop Anim Health Prod. 2017 Apr;49(4):739-745. doi: 10.1007/s11250-017-1251-6. Epub 2017 Mar 11.
8
Differential Drivers of Antimicrobial Resistance across the World.
Acc Chem Res. 2019 Apr 16;52(4):916-924. doi: 10.1021/acs.accounts.8b00643. Epub 2019 Mar 8.
9
Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment.
Crit Rev Biotechnol. 2018 Dec;38(8):1195-1208. doi: 10.1080/07388551.2018.1471038. Epub 2018 May 28.
10
Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes.
Environ Pollut. 2019 Nov;254(Pt B):113067. doi: 10.1016/j.envpol.2019.113067. Epub 2019 Aug 21.

引用本文的文献

3
A detailed review of bovine brucellosis.
Open Vet J. 2025 Apr;15(4):1520-1535. doi: 10.5455/OVJ.2025.v15.i4.2. Epub 2025 Mar 30.
4
: A Review of the Pathogenesis and Virulence Mechanisms.
Antibiotics (Basel). 2025 May 6;14(5):470. doi: 10.3390/antibiotics14050470.
6
and : Paragons of Probiotic Potential and Reservoirs of Novel Antimicrobials.
Microorganisms. 2025 Feb 28;13(3):555. doi: 10.3390/microorganisms13030555.
7
Residual antibiotics in milk samples: Assessing the risk and prevalence in Bangladesh.
Heliyon. 2024 Dec 21;11(1):e41422. doi: 10.1016/j.heliyon.2024.e41422. eCollection 2025 Jan 15.
8
in Wildlife: Clonal Dynamics and Antibiotic Resistance Profiles, a Systematic Review.
Pathogens. 2024 Oct 30;13(11):945. doi: 10.3390/pathogens13110945.
10
Molecular detection of avian pathogenic (APEC) in broiler meat from retail meat shop.
Heliyon. 2024 Aug 5;10(15):e35661. doi: 10.1016/j.heliyon.2024.e35661. eCollection 2024 Aug 15.

本文引用的文献

1
The Role of in Mastitis : A Multidisciplinary Working Group Experience.
J Hum Lact. 2020 Aug;36(3):503-509. doi: 10.1177/0890334419876272. Epub 2019 Oct 8.
2
Assessment of the Role of Wastewater Treatment Plant in Spread of Antibiotic Resistance and Bacterial Pathogens.
Indian J Microbiol. 2019 Sep;59(3):261-265. doi: 10.1007/s12088-019-00793-2. Epub 2019 Mar 12.
3
Continuing occurrence of vancomycin resistance determinants in Danish pig farms 20 years after removing exposure to avoparcin.
Vet Microbiol. 2019 May;232:84-88. doi: 10.1016/j.vetmic.2019.04.007. Epub 2019 Apr 6.
5
Antibiotics in the Soil Environment-Degradation and Their Impact on Microbial Activity and Diversity.
Front Microbiol. 2019 Mar 8;10:338. doi: 10.3389/fmicb.2019.00338. eCollection 2019.
6
The Mandate for a Global "One Health" Approach to Antimicrobial Resistance Surveillance.
Am J Trop Med Hyg. 2019 Feb;100(2):227-228. doi: 10.4269/ajtmh.18-0973. Epub 2018 Dec 27.
8
Zoonotic multidrug-resistant microorganisms among small companion animals in Germany.
PLoS One. 2018 Dec 7;13(12):e0208364. doi: 10.1371/journal.pone.0208364. eCollection 2018.
10
Quorum sensing inhibitors as antipathogens: biotechnological applications.
Biotechnol Adv. 2019 Jan-Feb;37(1):68-90. doi: 10.1016/j.biotechadv.2018.11.006. Epub 2018 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验