Division of Pediatric Cardiology, New York University Langone Health, New York, NY, USA.
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
J Mol Cell Cardiol. 2020 Jul;144:1-11. doi: 10.1016/j.yjmcc.2020.04.027. Epub 2020 Apr 24.
Genetic variants in SCN5A can result in channelopathies such as the long QT syndrome type 3 (LQT3), but the therapeutic response to Na channel blockers can vary. We previously reported a case of an infant with malignant LQT3 and a missense Q1475P SCN5A variant, who was effectively treated with phenytoin, but only partially with mexiletine. Here, we functionally characterized this variant and investigated possible mechanisms for the differential drug actions.
Wild-type or mutant Na1.5 cDNAs were examined in transfected HEK293 cells with patch clamping and biochemical assays. We used computational modeling to provide insights into altered channel kinetics and to predict effects on the action potential.
The Q1475P variant in Na1.5 reduced the current density and channel surface expression, characteristic of a trafficking defect. The variant also led to positive shifts in the voltage dependence of steady-state activation and inactivation, faster inactivation and recovery from inactivation, and increased the "late" Na current. Simulations of Na1.5 gating with a 9-state Markov model suggested that transitions from inactivated to closed states were accelerated in Q1475P channels, leading to accumulation of channels in non-inactivated closed states. Simulations with a human ventricular myocyte model predicted action potential prolongation with Q1475P, compared with wild type, channels. Patch clamp data showed that mexiletine and phenytoin similarly rescued some of the gating defects. Chronic incubation with mexiletine, but not phenytoin, rescued the Na1.5-Q1475P trafficking defect, thus increasing mutant channel expression.
The gain-of-function effects of Na1.5-Q1475P predominate to cause a malignant long QT phenotype. Phenytoin partially corrects the gating defect without restoring surface expression of the mutant channel, whereas mexiletine restores surface expression of the mutant channel, which may explain the lack of efficacy of mexiletine when compared to phenytoin. Our data makes a case for experimental studies before embarking on a one-for-all therapy of arrhythmias.
SCN5A 中的遗传变异可导致通道病,如长 QT 综合征 3 型(LQT3),但钠通道阻滞剂的治疗反应可能不同。我们之前报道了一例患有恶性 LQT3 和错义 Q1475P SCN5A 变异的婴儿,该患者用苯妥英钠有效治疗,但用美西律仅部分有效。在这里,我们对该变体进行了功能表征,并研究了药物作用差异的可能机制。
用膜片钳和生化测定法检查转染的 HEK293 细胞中的野生型或突变型 Na1.5 cDNA。我们使用计算建模来提供对改变的通道动力学的深入了解,并预测对动作电位的影响。
Na1.5 中的 Q1475P 变体降低了电流密度和通道表面表达,这是一种运输缺陷的特征。该变体还导致稳态激活和失活的电压依赖性的正移、更快的失活和失活后恢复,以及增加“晚期”Na 电流。使用 9 状态 Markov 模型对 Na1.5 门控的模拟表明,Q1475P 通道中从失活状态到关闭状态的转变加速,导致通道在非失活的关闭状态下积累。使用人心室肌细胞模型的模拟预测与野生型相比,Q1475P 通道会导致动作电位延长。膜片钳数据表明,美西律和苯妥英钠类似地挽救了一些门控缺陷。与苯妥英钠相比,慢性孵育美西律可挽救 Na1.5-Q1475P 的运输缺陷,从而增加突变通道的表达。
Na1.5-Q1475P 的功能获得效应占主导地位,导致恶性长 QT 表型。苯妥英钠部分纠正门控缺陷,而不恢复突变通道的表面表达,而美西律则恢复突变通道的表面表达,这可能解释了与苯妥英钠相比,美西律无效的原因。我们的数据为在开始心律失常的一刀切治疗之前进行实验研究提供了依据。