Suppr超能文献

苯妥英钠通过独特的分子机制挽救新型长 QT3 变异。

A distinct molecular mechanism by which phenytoin rescues a novel long QT 3 variant.

机构信息

Division of Pediatric Cardiology, New York University Langone Health, New York, NY, USA.

Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

J Mol Cell Cardiol. 2020 Jul;144:1-11. doi: 10.1016/j.yjmcc.2020.04.027. Epub 2020 Apr 24.

Abstract

BACKGROUND

Genetic variants in SCN5A can result in channelopathies such as the long QT syndrome type 3 (LQT3), but the therapeutic response to Na channel blockers can vary. We previously reported a case of an infant with malignant LQT3 and a missense Q1475P SCN5A variant, who was effectively treated with phenytoin, but only partially with mexiletine. Here, we functionally characterized this variant and investigated possible mechanisms for the differential drug actions.

METHODS

Wild-type or mutant Na1.5 cDNAs were examined in transfected HEK293 cells with patch clamping and biochemical assays. We used computational modeling to provide insights into altered channel kinetics and to predict effects on the action potential.

RESULTS

The Q1475P variant in Na1.5 reduced the current density and channel surface expression, characteristic of a trafficking defect. The variant also led to positive shifts in the voltage dependence of steady-state activation and inactivation, faster inactivation and recovery from inactivation, and increased the "late" Na current. Simulations of Na1.5 gating with a 9-state Markov model suggested that transitions from inactivated to closed states were accelerated in Q1475P channels, leading to accumulation of channels in non-inactivated closed states. Simulations with a human ventricular myocyte model predicted action potential prolongation with Q1475P, compared with wild type, channels. Patch clamp data showed that mexiletine and phenytoin similarly rescued some of the gating defects. Chronic incubation with mexiletine, but not phenytoin, rescued the Na1.5-Q1475P trafficking defect, thus increasing mutant channel expression.

CONCLUSIONS

The gain-of-function effects of Na1.5-Q1475P predominate to cause a malignant long QT phenotype. Phenytoin partially corrects the gating defect without restoring surface expression of the mutant channel, whereas mexiletine restores surface expression of the mutant channel, which may explain the lack of efficacy of mexiletine when compared to phenytoin. Our data makes a case for experimental studies before embarking on a one-for-all therapy of arrhythmias.

摘要

背景

SCN5A 中的遗传变异可导致通道病,如长 QT 综合征 3 型(LQT3),但钠通道阻滞剂的治疗反应可能不同。我们之前报道了一例患有恶性 LQT3 和错义 Q1475P SCN5A 变异的婴儿,该患者用苯妥英钠有效治疗,但用美西律仅部分有效。在这里,我们对该变体进行了功能表征,并研究了药物作用差异的可能机制。

方法

用膜片钳和生化测定法检查转染的 HEK293 细胞中的野生型或突变型 Na1.5 cDNA。我们使用计算建模来提供对改变的通道动力学的深入了解,并预测对动作电位的影响。

结果

Na1.5 中的 Q1475P 变体降低了电流密度和通道表面表达,这是一种运输缺陷的特征。该变体还导致稳态激活和失活的电压依赖性的正移、更快的失活和失活后恢复,以及增加“晚期”Na 电流。使用 9 状态 Markov 模型对 Na1.5 门控的模拟表明,Q1475P 通道中从失活状态到关闭状态的转变加速,导致通道在非失活的关闭状态下积累。使用人心室肌细胞模型的模拟预测与野生型相比,Q1475P 通道会导致动作电位延长。膜片钳数据表明,美西律和苯妥英钠类似地挽救了一些门控缺陷。与苯妥英钠相比,慢性孵育美西律可挽救 Na1.5-Q1475P 的运输缺陷,从而增加突变通道的表达。

结论

Na1.5-Q1475P 的功能获得效应占主导地位,导致恶性长 QT 表型。苯妥英钠部分纠正门控缺陷,而不恢复突变通道的表面表达,而美西律则恢复突变通道的表面表达,这可能解释了与苯妥英钠相比,美西律无效的原因。我们的数据为在开始心律失常的一刀切治疗之前进行实验研究提供了依据。

相似文献

1
A distinct molecular mechanism by which phenytoin rescues a novel long QT 3 variant.
J Mol Cell Cardiol. 2020 Jul;144:1-11. doi: 10.1016/j.yjmcc.2020.04.027. Epub 2020 Apr 24.
3
Trafficking defects and gating abnormalities of a novel SCN5A mutation question gene-specific therapy in long QT syndrome type 3.
Circ Res. 2010 Apr 30;106(8):1374-83. doi: 10.1161/CIRCRESAHA.110.218891. Epub 2010 Mar 25.
5
Effects of open-channel blocking peptides in Na1.5 ΔKPQ.
Biophys J. 2025 Jul 15;124(14):2263-2279. doi: 10.1016/j.bpj.2025.05.030. Epub 2025 Jun 2.
6
Multiplexed Assays of Variant Effect and Automated Patch Clamping Improve -LQTS Variant Classification and Cardiac Event Risk Stratification.
Circulation. 2024 Dec 3;150(23):1869-1881. doi: 10.1161/CIRCULATIONAHA.124.069828. Epub 2024 Sep 24.
7
Carbamazepine versus phenytoin monotherapy for epilepsy: an individual participant data review.
Cochrane Database Syst Rev. 2017 Feb 27;2(2):CD001911. doi: 10.1002/14651858.CD001911.pub3.
9
Drug treatment for myotonia.
Cochrane Database Syst Rev. 2025 Apr 8;4(4):CD004762. doi: 10.1002/14651858.CD004762.pub3.
10
Carbamazepine versus phenytoin monotherapy for epilepsy: an individual participant data review.
Cochrane Database Syst Rev. 2015 Aug 14(8):CD001911. doi: 10.1002/14651858.CD001911.pub2.

引用本文的文献

1
Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome.
Cell Discov. 2025 Jan 10;11(1):3. doi: 10.1038/s41421-024-00738-0.
2
Management of Long QT Syndrome: A Systematic Review.
Cureus. 2024 Jun 18;16(6):e62592. doi: 10.7759/cureus.62592. eCollection 2024 Jun.
3
Biophysical mechanisms of myocardium sodium channelopathies.
Pflugers Arch. 2024 May;476(5):735-753. doi: 10.1007/s00424-024-02930-3. Epub 2024 Mar 1.
4
Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation.
Physiol Rev. 2024 Jul 1;104(3):1265-1333. doi: 10.1152/physrev.00017.2023. Epub 2023 Dec 28.
6
Variant-specific therapy for long QT syndrome type 3.
Heart Rhythm. 2023 May;20(5):718-719. doi: 10.1016/j.hrthm.2023.02.013. Epub 2023 Feb 15.
8
Inflammation as a Risk Factor in Cardiotoxicity: An Important Consideration for Screening During Drug Development.
Front Pharmacol. 2021 Apr 19;12:598549. doi: 10.3389/fphar.2021.598549. eCollection 2021.
9
and Models to Study SARS-CoV-2 Infection: Integrating Experimental and Computational Tools to Mimic "COVID-19 Cardiomyocyte".
Front Physiol. 2021 Feb 17;12:624185. doi: 10.3389/fphys.2021.624185. eCollection 2021.

本文引用的文献

1
An International, Multicentered, Evidence-Based Reappraisal of Genes Reported to Cause Congenital Long QT Syndrome.
Circulation. 2020 Feb 11;141(6):418-428. doi: 10.1161/CIRCULATIONAHA.119.043132. Epub 2020 Jan 27.
2
Functional characterization of TRPM4 variants identified in sudden unexpected natural death.
Forensic Sci Int. 2018 Dec;293:37-46. doi: 10.1016/j.forsciint.2018.10.006. Epub 2018 Oct 24.
3
A Heart for Diversity: Simulating Variability in Cardiac Arrhythmia Research.
Front Physiol. 2018 Jul 20;9:958. doi: 10.3389/fphys.2018.00958. eCollection 2018.
5
The late sodium current in heart failure: pathophysiology and clinical relevance.
ESC Heart Fail. 2014 Sep;1(1):26-40. doi: 10.1002/ehf2.12003.
6
Complexity of ranolazine and phenytoin use in an infant with long QT syndrome type 3.
HeartRhythm Case Rep. 2016 Oct 17;3(1):104-108. doi: 10.1016/j.hrcr.2016.10.001. eCollection 2017 Jan.
7
Infant sudden death: Mutations responsible for impaired Nav1.5 channel trafficking and function.
Pacing Clin Electrophysiol. 2017 Jun;40(6):703-712. doi: 10.1111/pace.13087. Epub 2017 May 16.
8
Molecular Pathophysiology of Congenital Long QT Syndrome.
Physiol Rev. 2017 Jan;97(1):89-134. doi: 10.1152/physrev.00008.2016.
9
Gene-Specific Therapy With Mexiletine Reduces Arrhythmic Events in Patients With Long QT Syndrome Type 3.
J Am Coll Cardiol. 2016 Mar 8;67(9):1053-1058. doi: 10.1016/j.jacc.2015.12.033.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验