Suppr超能文献

组蛋白 H3K9 甲基化通过染色体紧缩和核周锚定促进 的基因组区室形成。

Histone H3K9 methylation promotes formation of genome compartments in via chromosome compaction and perinuclear anchoring.

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720.

Howard Hughes Medical Institute, University of California, Berkeley, CA 94720.

出版信息

Proc Natl Acad Sci U S A. 2020 May 26;117(21):11459-11470. doi: 10.1073/pnas.2002068117. Epub 2020 May 8.

Abstract

Genomic regions preferentially associate with regions of similar transcriptional activity, partitioning genomes into active and inactive compartments within the nucleus. Here we explore mechanisms controlling genome compartment organization in and investigate roles for compartments in regulating gene expression. Distal arms of chromosomes, which are enriched for heterochromatic histone modifications H3K9me1/me2/me3, interact with each other both and while interacting less frequently with central regions, leading to genome compartmentalization. Arms are anchored to the nuclear periphery via the nuclear envelope protein CEC-4, which binds to H3K9me. By performing genome-wide chromosome conformation capture experiments (Hi-C), we showed that eliminating H3K9me1/me2/me3 through mutations in the methyltransferase genes and significantly impaired formation of inactive Arm and active Center compartments. mutations also impaired compartmentalization, but to a lesser extent. We found that H3K9me promotes compartmentalization through two distinct mechanisms: Perinuclear anchoring of chromosome arms via CEC-4 to promote their association, and an anchoring-independent mechanism that compacts individual chromosome arms. In both and mutants, no dramatic changes in gene expression were found for genes that switched compartments or for genes that remained in their original compartment, suggesting that compartment strength does not dictate gene-expression levels. Furthermore, H3K9me, but not perinuclear anchoring, also contributes to formation of another prominent feature of chromosome organization, megabase-scale topologically associating domains on X established by the dosage compensation condensin complex. Our results demonstrate that H3K9me plays crucial roles in regulating genome organization at multiple levels.

摘要

基因组区域优先与转录活性相似的区域相关联,从而将基因组划分为核内的活性和非活性隔室。在这里,我们探索了控制基因组隔室组织的机制,并研究了隔室在调节基因表达中的作用。 染色体的远端臂富含异染色质组蛋白修饰 H3K9me1/me2/me3,它们在 和 中相互作用,而与中央区域的相互作用频率较低,导致基因组隔室化。臂通过与 H3K9me 结合的核膜蛋白 CEC-4 锚定到核的外周。通过进行全基因组染色体构象捕获实验(Hi-C),我们表明,通过甲基转移酶基因 和 的突变消除 H3K9me1/me2/me3 会显著损害失活的 Arm 和活性的 Center 隔室的形成。 突变也会损害隔室化,但程度较小。我们发现 H3K9me 通过两种不同的机制促进隔室化:通过 CEC-4 对染色体臂进行核周锚定以促进它们的 关联,以及一种不依赖于锚定的机制,可压缩单个染色体臂。在 和 突变体中,对于那些切换隔室的基因或那些仍然处于其原始隔室的基因,没有发现明显的基因表达变化,这表明隔室强度并不决定基因表达水平。此外,H3K9me(而非核周锚定)也有助于形成另一个染色体组织的突出特征,即由剂量补偿凝聚素复合物建立的 X 上的兆碱基尺度拓扑关联域。我们的结果表明,H3K9me 在多个层面上对调节基因组组织起着至关重要的作用。

相似文献

1
Histone H3K9 methylation promotes formation of genome compartments in via chromosome compaction and perinuclear anchoring.
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11459-11470. doi: 10.1073/pnas.2002068117. Epub 2020 May 8.
2
Active chromatin marks drive spatial sequestration of heterochromatin in C. elegans nuclei.
Nature. 2019 May;569(7758):734-739. doi: 10.1038/s41586-019-1243-y. Epub 2019 May 22.
3
Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery.
Cell. 2012 Aug 31;150(5):934-47. doi: 10.1016/j.cell.2012.06.051.
4
Perinuclear Anchoring of H3K9-Methylated Chromatin Stabilizes Induced Cell Fate in C. elegans Embryos.
Cell. 2015 Dec 3;163(6):1333-47. doi: 10.1016/j.cell.2015.10.066. Epub 2015 Nov 19.
5
Defining heterochromatin in C. elegans through genome-wide analysis of the heterochromatin protein 1 homolog HPL-2.
Genome Res. 2015 Jan;25(1):76-88. doi: 10.1101/gr.180489.114. Epub 2014 Dec 2.
6
Heterochromatic foci and transcriptional repression by an unstructured MET-2/SETDB1 co-factor LIN-65.
J Cell Biol. 2019 Mar 4;218(3):820-838. doi: 10.1083/jcb.201811038. Epub 2019 Feb 8.
7
Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in embryos.
Sci Adv. 2018 Aug 22;4(8):eaat6224. doi: 10.1126/sciadv.aat6224. eCollection 2018 Aug.
9
SETDB1-like MET-2 promotes transcriptional silencing and development independently of its H3K9me-associated catalytic activity.
Nat Struct Mol Biol. 2022 Feb;29(2):85-96. doi: 10.1038/s41594-021-00712-4. Epub 2022 Jan 31.

引用本文的文献

1
Phase Separation in Chromatin Organization and Human Diseases.
Int J Mol Sci. 2025 May 28;26(11):5156. doi: 10.3390/ijms26115156.
2
Cohesin organizes 3D DNA contacts surrounding active enhancers in .
Genome Res. 2025 May 2;35(5):1108-1123. doi: 10.1101/gr.279365.124.
3
Role of the cytoskeleton in cellular reprogramming: effects of biophysical and biochemical factors.
Front Mol Biosci. 2025 Mar 7;12:1538806. doi: 10.3389/fmolb.2025.1538806. eCollection 2025.
4
MyoD1 localization at the nuclear periphery is mediated by association of WFS1 with active enhancers.
Nat Commun. 2025 Mar 17;16(1):2614. doi: 10.1038/s41467-025-57758-x.
6
Chromatin Organization during Early Development.
DNA (Basel). 2024 Mar;4(1):64-83. doi: 10.3390/dna4010004. Epub 2024 Feb 22.
7
Development and evolution of Drosophila chromatin landscape in a 3D genome context.
Nat Commun. 2024 Nov 1;15(1):9452. doi: 10.1038/s41467-024-53892-0.
8
Crossing epigenetic frontiers: the intersection of novel histone modifications and diseases.
Signal Transduct Target Ther. 2024 Sep 16;9(1):232. doi: 10.1038/s41392-024-01918-w.
9
Dynamic Changes in Histone Modifications Are Associated with Differential Chromatin Interactions.
Genes (Basel). 2024 Jul 26;15(8):988. doi: 10.3390/genes15080988.
10
Chromosome fusion and programmed DNA elimination shape karyotypes of nematodes.
Curr Biol. 2024 May 20;34(10):2147-2161.e5. doi: 10.1016/j.cub.2024.04.022. Epub 2024 Apr 29.

本文引用的文献

1
Lamina-Dependent Stretching and Unconventional Chromosome Compartments in Early C. elegans Embryos.
Mol Cell. 2020 Apr 2;78(1):96-111.e6. doi: 10.1016/j.molcel.2020.02.006. Epub 2020 Feb 26.
2
On the existence and functionality of topologically associating domains.
Nat Genet. 2020 Jan;52(1):8-16. doi: 10.1038/s41588-019-0561-1. Epub 2020 Jan 10.
3
Developmentally regulated expression is robust to TAD perturbations.
Development. 2019 Sep 30;146(19):dev179523. doi: 10.1242/dev.179523.
4
Chromatin conformation remains stable upon extensive transcriptional changes driven by heat shock.
Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19431-19439. doi: 10.1073/pnas.1901244116. Epub 2019 Sep 10.
5
X Chromosome Domain Architecture Regulates Caenorhabditis elegans Lifespan but Not Dosage Compensation.
Dev Cell. 2019 Oct 21;51(2):192-207.e6. doi: 10.1016/j.devcel.2019.08.004. Epub 2019 Sep 5.
6
Functional dissection of the Sox9-Kcnj2 locus identifies nonessential and instructive roles of TAD architecture.
Nat Genet. 2019 Aug;51(8):1263-1271. doi: 10.1038/s41588-019-0466-z. Epub 2019 Jul 29.
7
Two major mechanisms of chromosome organization.
Curr Opin Cell Biol. 2019 Jun;58:142-152. doi: 10.1016/j.ceb.2019.05.001. Epub 2019 Jun 20.
8
Regulatory Landscaping: How Enhancer-Promoter Communication Is Sculpted in 3D.
Mol Cell. 2019 Jun 20;74(6):1110-1122. doi: 10.1016/j.molcel.2019.05.032.
9
Predicting three-dimensional genome organization with chromatin states.
PLoS Comput Biol. 2019 Jun 10;15(6):e1007024. doi: 10.1371/journal.pcbi.1007024. eCollection 2019 Jun.
10
Heterochromatin drives compartmentalization of inverted and conventional nuclei.
Nature. 2019 Jun;570(7761):395-399. doi: 10.1038/s41586-019-1275-3. Epub 2019 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验