Suppr超能文献

分枝杆菌阿拉伯呋喃糖基转移酶 AftD 的冷冻电镜结构和调控。

Cryo-EM Structures and Regulation of Arabinofuranosyltransferase AftD from Mycobacteria.

机构信息

Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA.

Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

出版信息

Mol Cell. 2020 May 21;78(4):683-699.e11. doi: 10.1016/j.molcel.2020.04.014. Epub 2020 May 7.

Abstract

Mycobacterium tuberculosis causes tuberculosis, a disease that kills over 1 million people each year. Its cell envelope is a common antibiotic target and has a unique structure due, in part, to two lipidated polysaccharides-arabinogalactan and lipoarabinomannan. Arabinofuranosyltransferase D (AftD) is an essential enzyme involved in assembling these glycolipids. We present the 2.9-Å resolution structure of M. abscessus AftD, determined by single-particle cryo-electron microscopy. AftD has a conserved GT-C glycosyltransferase fold and three carbohydrate-binding modules. Glycan array analysis shows that AftD binds complex arabinose glycans. Additionally, AftD is non-covalently complexed with an acyl carrier protein (ACP). 3.4- and 3.5-Å structures of a mutant with impaired ACP binding reveal a conformational change, suggesting that ACP may regulate AftD function. Mutagenesis experiments using a conditional knockout constructed in M. smegmatis confirm the essentiality of the putative active site and the ACP binding for AftD function.

摘要

结核分枝杆菌会引起结核病,这种疾病每年导致超过 100 万人死亡。它的细胞壁是常见的抗生素靶标,由于部分原因,其结构具有独特性,部分原因在于存在两种脂化多糖——阿拉伯半乳聚糖和脂阿拉伯甘露聚糖。阿拉伯呋喃糖基转移酶 D(AftD)是参与组装这些糖脂的必需酶。我们通过单颗粒冷冻电子显微镜确定了脓肿分枝杆菌 AftD 的 2.9 Å 分辨率结构。AftD 具有保守的 GT-C 糖基转移酶折叠和三个碳水化合物结合模块。糖基阵列分析表明,AftD 结合复杂的阿拉伯糖聚糖。此外,AftD 与酰基载体蛋白(ACP)非共价复合。与 ACP 结合能力受损的突变体的 3.4 和 3.5 Å 结构揭示了构象变化,表明 ACP 可能调节 AftD 的功能。使用在耻垢分枝杆菌中构建的条件性敲除进行的突变实验证实了假定的活性位点和 ACP 结合对 AftD 功能的重要性。

相似文献

1
Cryo-EM Structures and Regulation of Arabinofuranosyltransferase AftD from Mycobacteria.
Mol Cell. 2020 May 21;78(4):683-699.e11. doi: 10.1016/j.molcel.2020.04.014. Epub 2020 May 7.
2
AftD, a novel essential arabinofuranosyltransferase from mycobacteria.
Glycobiology. 2009 Nov;19(11):1235-47. doi: 10.1093/glycob/cwp116. Epub 2009 Aug 4.
3
Roles of conserved proline and glycosyltransferase motifs of EmbC in biosynthesis of lipoarabinomannan.
J Biol Chem. 2005 Feb 18;280(7):5651-63. doi: 10.1074/jbc.M411418200. Epub 2004 Nov 16.
5
Cryo-EM structure of arabinosyltransferase EmbB from Mycobacterium smegmatis.
Nat Commun. 2020 Jul 7;11(1):3396. doi: 10.1038/s41467-020-17202-8.
6
Biosynthesis of mycobacterial arabinogalactan: identification of a novel alpha(1-->3) arabinofuranosyltransferase.
Mol Microbiol. 2008 Sep;69(5):1191-206. doi: 10.1111/j.1365-2958.2008.06354.x. Epub 2008 Jul 4.
7
The C-terminal domain of the Arabinosyltransferase Mycobacterium tuberculosis EmbC is a lectin-like carbohydrate binding module.
PLoS Pathog. 2011 Feb;7(2):e1001299. doi: 10.1371/journal.ppat.1001299. Epub 2011 Feb 24.
8
The effect of MSMEG_6402 gene disruption on the cell wall structure of Mycobacterium smegmatis.
Microb Pathog. 2011 Sep;51(3):156-60. doi: 10.1016/j.micpath.2011.04.005. Epub 2011 May 6.
9
Conformational plasticity of the essential membrane-associated mannosyltransferase PimA from mycobacteria.
J Biol Chem. 2013 Oct 11;288(41):29797-808. doi: 10.1074/jbc.M113.462705. Epub 2013 Aug 20.
10
Disruption of the SucT acyltransferase in abrogates succinylation of cell envelope polysaccharides.
J Biol Chem. 2019 Jun 28;294(26):10325-10335. doi: 10.1074/jbc.RA119.008585. Epub 2019 May 20.

引用本文的文献

1
Structure and assembly of the MmpL5/MmpS5 efflux transporter from Mycobacterium tuberculosis.
Nat Commun. 2025 May 29;16(1):4976. doi: 10.1038/s41467-025-60365-5.
2
Structural insights into terminal arabinosylation of mycobacterial cell wall arabinan.
Nat Commun. 2025 Apr 29;16(1):3973. doi: 10.1038/s41467-025-58196-5.
3
Structural basis of siderophore export and drug efflux by Mycobacterium tuberculosis.
Nat Commun. 2025 Feb 24;16(1):1934. doi: 10.1038/s41467-025-56888-6.
4
Structural insights into polyisoprenyl-binding glycosyltransferases.
Structure. 2025 Apr 3;33(4):639-651. doi: 10.1016/j.str.2025.01.003. Epub 2025 Jan 29.
5
Three-component systems represent a common pathway for extracytoplasmic addition of pentofuranose sugars into bacterial glycans.
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2402554121. doi: 10.1073/pnas.2402554121. Epub 2024 May 15.
6
Structural analysis of phosphoribosyltransferase-mediated cell wall precursor synthesis in Mycobacterium tuberculosis.
Nat Microbiol. 2024 Apr;9(4):976-987. doi: 10.1038/s41564-024-01643-8. Epub 2024 Mar 15.
7
Molecular Architecture of Salmonella Typhimurium Virus P22 Genome Ejection Machinery.
J Mol Biol. 2023 Dec 15;435(24):168365. doi: 10.1016/j.jmb.2023.168365. Epub 2023 Nov 10.
9
Structure of the priming arabinosyltransferase AftA required for AG biosynthesis of .
Proc Natl Acad Sci U S A. 2023 Jun 6;120(23):e2302858120. doi: 10.1073/pnas.2302858120. Epub 2023 May 30.
10
Anti-tuberculosis drug development targeting the cell envelope of .
Front Microbiol. 2022 Dec 21;13:1056608. doi: 10.3389/fmicb.2022.1056608. eCollection 2022.

本文引用的文献

1
Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction.
Nat Methods. 2020 Dec;17(12):1214-1221. doi: 10.1038/s41592-020-00990-8. Epub 2020 Nov 30.
2
Cryo-electron microscopy structures of human oligosaccharyltransferase complexes OST-A and OST-B.
Science. 2019 Dec 13;366(6471):1372-1375. doi: 10.1126/science.aaz3505.
3
Non-uniformity of projection distributions attenuates resolution in Cryo-EM.
Prog Biophys Mol Biol. 2020 Jan;150:160-183. doi: 10.1016/j.pbiomolbio.2019.09.002. Epub 2019 Sep 13.
5
Structure of the eukaryotic protein O-mannosyltransferase Pmt1-Pmt2 complex.
Nat Struct Mol Biol. 2019 Aug;26(8):704-711. doi: 10.1038/s41594-019-0262-6. Epub 2019 Jul 8.
6
Cell Walls and Membranes of Actinobacteria.
Subcell Biochem. 2019;92:417-469. doi: 10.1007/978-3-030-18768-2_13.
9
High resolution single particle cryo-electron microscopy using beam-image shift.
J Struct Biol. 2018 Nov;204(2):270-275. doi: 10.1016/j.jsb.2018.07.015. Epub 2018 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验