Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland.
Res Synth Methods. 2021 Jan;12(1):4-12. doi: 10.1002/jrsm.1424. Epub 2020 Jun 11.
"Classic" forest plots show the effect sizes from individual studies and the aggregate effect from a meta-analysis. However, in ecology and evolution, meta-analyses routinely contain over 100 effect sizes, making the classic forest plot of limited use. We surveyed 102 meta-analyses in ecology and evolution, finding that only 11% use the classic forest plot. Instead, most used a "forest-like plot," showing point estimates (with 95% confidence intervals [CIs]) from a series of subgroups or categories in a meta-regression. We propose a modification of the forest-like plot, which we name the "orchard plot." Orchard plots, in addition to showing overall mean effects and CIs from meta-analyses/regressions, also include 95% prediction intervals (PIs), and the individual effect sizes scaled by their precision. The PI allows the user and reader to see the range in which an effect size from a future study may be expected to fall. The PI, therefore, provides an intuitive interpretation of any heterogeneity in the data. Supplementing the PI, the inclusion of underlying effect sizes also allows the user to see any influential or outlying effect sizes. We showcase the orchard plot with example datasets from ecology and evolution, using the R package, orchard, including several functions for visualizing meta-analytic data using forest-plot derivatives. We consider the orchard plot as a variant on the classic forest plot, cultivated to the needs of meta-analysts in ecology and evolution. Hopefully, the orchard plot will prove fruitful for visualizing large collections of heterogeneous effect sizes regardless of the field of study.
"经典"森林图展示了来自个体研究的效应大小和荟萃分析的综合效应。然而,在生态学和进化领域,荟萃分析通常包含超过 100 个效应大小,使得经典森林图的作用有限。我们调查了生态学和进化领域的 102 项荟萃分析,发现只有 11%使用了经典森林图。相反,大多数人使用了"森林状图",显示了元回归中一系列亚组或类别的点估计值(带有 95%置信区间[CI])。我们提出了对森林状图的一种修改,我们将其命名为"果园图"。果园图除了显示荟萃分析/回归的总体平均效应和 CI 外,还包括 95%预测区间(PI),以及按精度缩放的个体效应大小。PI 允许用户和读者看到未来研究中效应大小可能预期的范围。因此,PI 为数据中的任何异质性提供了直观的解释。补充 PI,包括基础效应大小,还允许用户看到任何有影响力或异常的效应大小。我们使用生态学和进化领域的示例数据集,以及 R 包 orchard,展示了果园图,该包包括了使用森林图衍生工具可视化荟萃分析数据的几个功能。我们认为果园图是经典森林图的变体,是为生态学和进化领域的荟萃分析人员的需求而培育的。希望果园图能够证明对可视化大量异质效应大小是富有成效的,无论研究领域如何。