Suppr超能文献

巨噬细胞驱动的营养物质输送到吞噬体金黄色葡萄球菌有助于细菌生长。

Macrophage-driven nutrient delivery to phagosomal Staphylococcus aureus supports bacterial growth.

机构信息

Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada.

出版信息

EMBO Rep. 2020 Aug 5;21(8):e50348. doi: 10.15252/embr.202050348. Epub 2020 May 25.

Abstract

Staphylococcus aureus is a notorious pathogen causing significant morbidity and mortality worldwide. The ability of S. aureus to survive and replicate within phagocytes such as macrophages represents an important facet of immune evasion and contributes to pathogenesis. The mechanisms by which S. aureus acquires nutrients within host cells to support growth remain poorly characterized. Here, we demonstrate that macrophages infected with S. aureus maintain their dynamic ruffling behavior and consume macromolecules from the extracellular milieu. To support the notion that fluid-phase uptake by macrophages can provide S. aureus with nutrients, we utilized the pharmacological inhibitors PIK-III and Dynasore to impair uptake of extracellular macromolecules. Inhibitor treatment also impaired S. aureus replication within macrophages. Finally, using a mutant of S. aureus that is defective in purine biosynthesis we show that intracellular growth is inhibited unless the macrophage culture medium is supplemented with the metabolite inosine monophosphate. This growth rescue can be impaired by inhibition of fluid-phase uptake. In summary, through consumption of the extracellular environment macrophages deliver nutrients to phagolysosomal S. aureus to promote bacterial growth.

摘要

金黄色葡萄球菌是一种臭名昭著的病原体,在全球范围内造成了重大的发病率和死亡率。金黄色葡萄球菌能够在巨噬细胞等吞噬细胞中存活和复制,这是其免疫逃避的一个重要方面,也是其发病机制的一个重要因素。金黄色葡萄球菌在宿主细胞内获取营养物质以支持生长的机制仍知之甚少。在这里,我们证明了被金黄色葡萄球菌感染的巨噬细胞保持其动态皱襞行为,并从细胞外环境中消耗大分子物质。为了支持巨噬细胞通过液相传质摄取可以为金黄色葡萄球菌提供营养物质的观点,我们利用药理学抑制剂 PIK-III 和 Dynasore 来削弱细胞外大分子物质的摄取。抑制剂处理也削弱了巨噬细胞内金黄色葡萄球菌的复制。最后,我们使用一种嘌呤生物合成缺陷的金黄色葡萄球菌突变体进行实验,表明除非在巨噬细胞培养基中补充代谢物肌苷单磷酸,否则细胞内生长将受到抑制。这种生长挽救可以通过抑制液相传质摄取来削弱。总之,通过消耗细胞外环境,巨噬细胞将营养物质输送到吞噬溶酶体中的金黄色葡萄球菌中,以促进细菌生长。

相似文献

1
Macrophage-driven nutrient delivery to phagosomal Staphylococcus aureus supports bacterial growth.
EMBO Rep. 2020 Aug 5;21(8):e50348. doi: 10.15252/embr.202050348. Epub 2020 May 25.
2
Inside job: Staphylococcus aureus host-pathogen interactions.
Int J Med Microbiol. 2018 Aug;308(6):607-624. doi: 10.1016/j.ijmm.2017.11.009. Epub 2017 Nov 26.
5
The Role of Macrophages in Infection.
Front Immunol. 2021 Jan 19;11:620339. doi: 10.3389/fimmu.2020.620339. eCollection 2020.
6
In or out: Phagosomal escape of Staphylococcus aureus.
Cell Microbiol. 2019 Mar;21(3):e12997. doi: 10.1111/cmi.12997. Epub 2019 Jan 18.
7
Differential survival of Staphylococcal species in macrophages.
Mol Microbiol. 2024 Mar;121(3):470-480. doi: 10.1111/mmi.15184. Epub 2023 Oct 28.
8
Infection of Primary Human Alveolar Macrophages Alters Staphylococcus aureus Toxin Production and Activity.
Infect Immun. 2019 Jun 20;87(7). doi: 10.1128/IAI.00167-19. Print 2019 Jul.
9
Measurement of Accumulation of Antibiotics to Staphylococcus aureus in Phagosomes of Live Macrophages.
Angew Chem Int Ed Engl. 2024 Jan 15;63(3):e202313870. doi: 10.1002/anie.202313870. Epub 2023 Dec 15.
10
Metabolic diversity of human macrophages: potential influence on intracellular survival.
Infect Immun. 2024 Feb 13;92(2):e0047423. doi: 10.1128/iai.00474-23. Epub 2024 Jan 5.

引用本文的文献

1
Inactivation of branched-chain amino acid uptake halts Staphylococcus aureus growth and induces bacterial quiescence within macrophages.
PLoS Pathog. 2025 Aug 8;21(8):e1013291. doi: 10.1371/journal.ppat.1013291. eCollection 2025 Aug.
2
A natural killer cell mimic against intracellular pathogen infections.
Sci Adv. 2024 Nov;10(44):eadp3976. doi: 10.1126/sciadv.adp3976. Epub 2024 Oct 30.
4
Metabolic diversity of human macrophages: potential influence on intracellular survival.
Infect Immun. 2024 Feb 13;92(2):e0047423. doi: 10.1128/iai.00474-23. Epub 2024 Jan 5.
6
Staphylococcus lugdunensis Uses the Agr Regulatory System to Resist Killing by Host Innate Immune Effectors.
Infect Immun. 2022 Oct 20;90(10):e0009922. doi: 10.1128/iai.00099-22. Epub 2022 Sep 7.
7
Exploring the Role of in Inflammatory Diseases.
Toxins (Basel). 2022 Jul 6;14(7):464. doi: 10.3390/toxins14070464.
8
Luteolin Inhibits the Biofilm Formation and Cytotoxicity of Methicillin-Resistant via Decreasing Bacterial Toxin Synthesis.
Evid Based Complement Alternat Med. 2022 May 9;2022:4476339. doi: 10.1155/2022/4476339. eCollection 2022.
9
Staphylococcal trafficking and infection-from 'nose to gut' and back.
FEMS Microbiol Rev. 2022 Jan 18;46(1). doi: 10.1093/femsre/fuab041.
10
Staphylococcus aureus cell wall structure and dynamics during host-pathogen interaction.
PLoS Pathog. 2021 Mar 31;17(3):e1009468. doi: 10.1371/journal.ppat.1009468. eCollection 2021 Mar.

本文引用的文献

2
Host resistance factor SLC11A1 restricts growth through magnesium deprivation.
Science. 2019 Nov 22;366(6468):995-999. doi: 10.1126/science.aax7898.
3
Peritoneal GATA6+ macrophages function as a portal for Staphylococcus aureus dissemination.
J Clin Invest. 2019 Nov 1;129(11):4643-4656. doi: 10.1172/JCI127286.
4
Virulence and Metabolism.
Microbiol Spectr. 2019 Mar;7(2). doi: 10.1128/microbiolspec.GPP3-0011-2018.
5
A Fluorescence Based-Proliferation Assay for the Identification of Replicating Bacteria Within Host Cells.
Front Microbiol. 2018 Dec 12;9:3084. doi: 10.3389/fmicb.2018.03084. eCollection 2018.
6
Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology.
Clin Microbiol Rev. 2018 Sep 12;31(4). doi: 10.1128/CMR.00020-18. Print 2018 Oct.
8
Macropinocytosis, mTORC1 and cellular growth control.
Cell Mol Life Sci. 2018 Apr;75(7):1227-1239. doi: 10.1007/s00018-017-2710-y. Epub 2017 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验