Suppr超能文献

离子转运体在耐盐性中的作用研究进展及培育耐盐作物品种。

Advances in studies on ion transporters involved in salt tolerance and breeding crop cultivars with high salt tolerance.

机构信息

Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou 310058, China.

出版信息

J Zhejiang Univ Sci B. 2020 Jun;21(6):426-441. doi: 10.1631/jzus.B1900510.

Abstract

Soil salinity is a global major abiotic stress threatening crop productivity. In salty conditions, plants may suffer from osmotic, ionic, and oxidative stresses, resulting in inhibition of growth and development. To deal with these stresses, plants have developed a series of tolerance mechanisms, including osmotic adjustment through accumulating compatible solutes in the cytoplasm, reactive oxygen species (ROS) scavenging through enhancing the activity of anti-oxidative enzymes, and Na/K homeostasis regulation through controlling Na uptake and transportation. In this review, recent advances in studies of the mechanisms of salt tolerance in plants are described in relation to the ionome, transcriptome, proteome, and metabolome, and the main factor accounting for differences in salt tolerance among plant species or genotypes within a species is presented. We also discuss the application and roles of different breeding methodologies in developing salt-tolerant crop cultivars. In particular, we describe the advantages and perspectives of genome or gene editing in improving the salt tolerance of crops.

摘要

土壤盐度是一种全球性的非生物胁迫,威胁着作物的生产力。在盐胁迫条件下,植物可能会遭受渗透、离子和氧化胁迫,从而抑制生长和发育。为了应对这些胁迫,植物已经发展出一系列的耐受机制,包括通过在细胞质中积累相容性溶质进行渗透调节、通过增强抗氧化酶的活性来清除活性氧(ROS)、以及通过控制 Na 摄取和运输来调节 Na/K 平衡。在这篇综述中,描述了与离子组学、转录组学、蛋白质组学和代谢组学相关的植物耐盐机制的最新进展,提出了导致不同植物物种或同一物种内不同基因型间耐盐性差异的主要因素。我们还讨论了不同育种方法在培育耐盐作物品种中的应用和作用。特别是,我们描述了基因组或基因编辑在提高作物耐盐性方面的优势和前景。

相似文献

2
From swamp to field: how genes from mangroves and its associates can enhance crop salinity tolerance.
Mol Biol Rep. 2024 Apr 29;51(1):598. doi: 10.1007/s11033-024-09539-w.
3
Engineering salinity tolerance in plants: progress and prospects.
Planta. 2020 Mar 9;251(4):76. doi: 10.1007/s00425-020-03366-6.
6
Mechanisms of plant salt response: insights from proteomics.
J Proteome Res. 2012 Jan 1;11(1):49-67. doi: 10.1021/pr200861w. Epub 2011 Dec 5.
7
Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora.
J Proteome Res. 2011 Sep 2;10(9):3852-70. doi: 10.1021/pr101102p. Epub 2011 Aug 8.
8
Stress salinity in plants: New strategies to cope with in the foreseeable scenario.
Plant Physiol Biochem. 2024 Mar;208:108507. doi: 10.1016/j.plaphy.2024.108507. Epub 2024 Mar 5.
9
Salt resistant crop plants.
Curr Opin Biotechnol. 2014 Apr;26:115-24. doi: 10.1016/j.copbio.2013.12.004. Epub 2014 Jan 9.

引用本文的文献

1
Understanding abiotic stress in alfalfa: physiological and molecular perspectives on salinity, drought, and heavy metal toxicity.
Front Plant Sci. 2025 Jul 31;16:1627599. doi: 10.3389/fpls.2025.1627599. eCollection 2025.
3
Physiological Responses and Salt Tolerance Evaluation of Different Varieties of under Salt Stress.
Plants (Basel). 2024 Aug 28;13(17):2409. doi: 10.3390/plants13172409.
4
MsSPL12 is a positive regulator in alfalfa (Medicago sativa L.) salt tolerance.
Plant Cell Rep. 2024 Mar 18;43(4):101. doi: 10.1007/s00299-024-03175-1.
6
The combination of salt and drought benefits selective ion absorption and nutrient use efficiency of halophyte .
Front Plant Sci. 2023 Apr 21;14:1091292. doi: 10.3389/fpls.2023.1091292. eCollection 2023.
7
Evaluation of Amino Acid Profiles of Rice Genotypes under Different Salt Stress Conditions.
Plants (Basel). 2023 Mar 14;12(6):1315. doi: 10.3390/plants12061315.
8
Genome-wide identification and expression analysis of the HD2 protein family and its response to drought and salt stress in species.
Front Plant Sci. 2023 Feb 13;14:1109031. doi: 10.3389/fpls.2023.1109031. eCollection 2023.

本文引用的文献

1
A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat.
Funct Plant Biol. 2004 Dec;31(11):1105-1114. doi: 10.1071/FP04111.
2
The HKT Transporter HvHKT1;5 Negatively Regulates Salt Tolerance.
Plant Physiol. 2020 Jan;182(1):584-596. doi: 10.1104/pp.19.00882. Epub 2019 Nov 5.
3
A Critical Role of Sodium Flux via the Plasma Membrane Na/H Exchanger SOS1 in the Salt Tolerance of Rice.
Plant Physiol. 2019 Jun;180(2):1046-1065. doi: 10.1104/pp.19.00324. Epub 2019 Apr 16.
4
Plant Salinity Stress: Many Unanswered Questions Remain.
Front Plant Sci. 2019 Feb 15;10:80. doi: 10.3389/fpls.2019.00080. eCollection 2019.
5
Applications and potential of genome editing in crop improvement.
Genome Biol. 2018 Nov 30;19(1):210. doi: 10.1186/s13059-018-1586-y.
7
8
Ionomic, metabolomic and proteomic analyses reveal molecular mechanisms of root adaption to salt stress in Tibetan wild barley.
Plant Physiol Biochem. 2018 Feb;123:319-330. doi: 10.1016/j.plaphy.2017.12.032. Epub 2017 Dec 24.
9
The Rice High-Affinity K Transporter OsHKT2;4 Mediates Mg Homeostasis under High-Mg Conditions in Transgenic .
Front Plant Sci. 2017 Oct 24;8:1823. doi: 10.3389/fpls.2017.01823. eCollection 2017.
10
CRISPR-Cas9 Based Genome Editing Reveals New Insights into MicroRNA Function and Regulation in Rice.
Front Plant Sci. 2017 Sep 13;8:1598. doi: 10.3389/fpls.2017.01598. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验