Suppr超能文献

活动依赖性髓鞘形成:大尺度脑网络中振荡自组织的神经胶质机制。

Activity-dependent myelination: A glial mechanism of oscillatory self-organization in large-scale brain networks.

机构信息

Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada.

Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.

出版信息

Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13227-13237. doi: 10.1073/pnas.1916646117. Epub 2020 Jun 1.

Abstract

Communication and oscillatory synchrony between distributed neural populations are believed to play a key role in multiple cognitive and neural functions. These interactions are mediated by long-range myelinated axonal fiber bundles, collectively termed as white matter. While traditionally considered to be static after development, white matter properties have been shown to change in an activity-dependent way through learning and behavior-a phenomenon known as white matter plasticity. In the central nervous system, this plasticity stems from oligodendroglia, which form myelin sheaths to regulate the conduction of nerve impulses across the brain, hence critically impacting neural communication. We here shift the focus from neural to glial contribution to brain synchronization and examine the impact of adaptive, activity-dependent changes in conduction velocity on the large-scale phase synchronization of neural oscillators. Using a network model based on primate large-scale white matter neuroanatomy, our computational and mathematical results show that such plasticity endows white matter with self-organizing properties, where conduction delay statistics are autonomously adjusted to ensure efficient neural communication. Our analysis shows that this mechanism stabilizes oscillatory neural activity across a wide range of connectivity gain and frequency bands, making phase-locked states more resilient to damage as reflected by diffuse decreases in connectivity. Critically, our work suggests that adaptive myelination may be a mechanism that enables brain networks with a means of temporal self-organization, resilience, and homeostasis.

摘要

分布式神经群体之间的通信和振荡同步被认为在多种认知和神经功能中起着关键作用。这些相互作用是通过长程有髓轴突纤维束介导的,这些纤维束统称为白质。虽然传统上认为白质在发育后是静态的,但已经表明白质特性可以通过学习和行为以活动依赖性的方式发生变化,这种现象称为白质可塑性。在中枢神经系统中,这种可塑性源于少突胶质细胞,它们形成髓鞘来调节神经冲动在大脑中的传导,因此对神经通讯具有至关重要的影响。我们在这里将注意力从神经转移到胶质对大脑同步的贡献,并研究传导速度的适应性、活动依赖性变化对神经振荡器的大规模相位同步的影响。使用基于灵长类动物大尺度白质神经解剖结构的网络模型,我们的计算和数学结果表明,这种可塑性赋予了白质自组织特性,其中传导延迟统计数据会自动调整以确保有效的神经通讯。我们的分析表明,这种机制可以稳定振荡神经活动在广泛的连接增益和频带范围内,使锁定状态更能抵抗损伤,因为连接的弥漫性降低反映了这种情况。至关重要的是,我们的工作表明,适应性髓鞘形成可能是一种机制,使具有时间自组织、弹性和内稳态的大脑网络成为可能。

相似文献

1
Activity-dependent myelination: A glial mechanism of oscillatory self-organization in large-scale brain networks.
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13227-13237. doi: 10.1073/pnas.1916646117. Epub 2020 Jun 1.
2
Role of myelin plasticity in oscillations and synchrony of neuronal activity.
Neuroscience. 2014 Sep 12;276:135-47. doi: 10.1016/j.neuroscience.2013.11.007. Epub 2013 Nov 28.
3
On Myelinated Axon Plasticity and Neuronal Circuit Formation and Function.
J Neurosci. 2017 Oct 18;37(42):10023-10034. doi: 10.1523/JNEUROSCI.3185-16.2017.
4
White matter plasticity in adulthood.
Neuroscience. 2014 Sep 12;276:148-60. doi: 10.1016/j.neuroscience.2013.10.018. Epub 2013 Oct 23.
6
Myelin plasticity modulates neural circuitry required for learning and behavior.
Neurosci Res. 2021 Jun;167:11-16. doi: 10.1016/j.neures.2020.12.005. Epub 2021 Jan 5.
7
Activity-Dependent Myelination.
Adv Exp Med Biol. 2019;1190:43-51. doi: 10.1007/978-981-32-9636-7_4.
8
Periods of synchronized myelin changes shape brain function and plasticity.
Nat Neurosci. 2021 Nov;24(11):1508-1521. doi: 10.1038/s41593-021-00917-2. Epub 2021 Oct 28.
9
White matter and neurological disorders.
Arch Pharm Res. 2020 Sep;43(9):920-931. doi: 10.1007/s12272-020-01270-x. Epub 2020 Sep 25.
10
Myelin plasticity and behaviour-connecting the dots.
Curr Opin Neurobiol. 2017 Dec;47:86-92. doi: 10.1016/j.conb.2017.09.014. Epub 2017 Oct 17.

引用本文的文献

1
Cortical and white matter T1w/T2w development proceed in concert during early infancy.
bioRxiv. 2025 Jul 10:2025.07.07.663449. doi: 10.1101/2025.07.07.663449.
3
Plasticity of Myelination.
Adv Neurobiol. 2025;43:181-204. doi: 10.1007/978-3-031-87919-7_8.
4
Emergence of a synergistic scaffold in the brains of human infants.
Commun Biol. 2025 May 13;8(1):743. doi: 10.1038/s42003-025-08082-z.
6
Unleashing the potential: 40 Hz multisensory stimulation therapy for cognitive impairment.
J Cent Nerv Syst Dis. 2025 Mar 27;17:11795735251328029. doi: 10.1177/11795735251328029. eCollection 2025.
8
Compensatory mechanisms amidst demyelinating disorders: insights into cognitive preservation.
Brain Commun. 2024 Nov 12;6(6):fcae353. doi: 10.1093/braincomms/fcae353. eCollection 2024.
9
Cholinergic Neuronal Activity Promotes Diffuse Midline Glioma Growth through Muscarinic Signaling.
bioRxiv. 2024 Sep 24:2024.09.21.614235. doi: 10.1101/2024.09.21.614235.
10
Neuron-Glial Interactions: Implications for Plasticity, Behavior, and Cognition.
J Neurosci. 2024 Oct 2;44(40):e1231242024. doi: 10.1523/JNEUROSCI.1231-24.2024.

本文引用的文献

1
Disruption of Oligodendrogenesis Impairs Memory Consolidation in Adult Mice.
Neuron. 2020 Jan 8;105(1):150-164.e6. doi: 10.1016/j.neuron.2019.10.013. Epub 2019 Nov 18.
2
Endothelin signalling mediates experience-dependent myelination in the CNS.
Elife. 2019 Oct 28;8:e49493. doi: 10.7554/eLife.49493.
3
Transmission time delays organize the brain network synchronization.
Philos Trans A Math Phys Eng Sci. 2019 Sep 9;377(2153):20180132. doi: 10.1098/rsta.2018.0132. Epub 2019 Jul 22.
4
A macaque connectome for large-scale network simulations in TheVirtualBrain.
Sci Data. 2019 Jul 17;6(1):123. doi: 10.1038/s41597-019-0129-z.
5
White matter plasticity and maturation in human cognition.
Glia. 2019 Nov;67(11):2020-2037. doi: 10.1002/glia.23661. Epub 2019 Jun 24.
6
Loss of Adaptive Myelination Contributes to Methotrexate Chemotherapy-Related Cognitive Impairment.
Neuron. 2019 Jul 17;103(2):250-265.e8. doi: 10.1016/j.neuron.2019.04.032. Epub 2019 May 20.
7
Regulation of myelin structure and conduction velocity by perinodal astrocytes.
Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):11832-11837. doi: 10.1073/pnas.1811013115. Epub 2018 Oct 29.
8
Phase-lags in large scale brain synchronization: Methodological considerations and in-silico analysis.
PLoS Comput Biol. 2018 Jul 10;14(7):e1006160. doi: 10.1371/journal.pcbi.1006160. eCollection 2018 Jul.
9
Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex.
Nat Neurosci. 2018 May;21(5):696-706. doi: 10.1038/s41593-018-0121-5. Epub 2018 Mar 19.
10
Evidence for Myelin Sheath Remodeling in the CNS Revealed by In Vivo Imaging.
Curr Biol. 2018 Feb 19;28(4):549-559.e3. doi: 10.1016/j.cub.2018.01.017. Epub 2018 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验