Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
Department of Emergency Medicine, Vagelos School of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA.
Mol Psychiatry. 2021 Sep;26(9):5011-5022. doi: 10.1038/s41380-020-0789-2. Epub 2020 Jun 2.
Active-duty Army personnel can be exposed to traumatic warzone events and are at increased risk for developing post-traumatic stress disorder (PTSD) compared with the general population. PTSD is associated with high individual and societal costs, but identification of predictive markers to determine deployment readiness and risk mitigation strategies is not well understood. This prospective longitudinal naturalistic cohort study-the Fort Campbell Cohort study-examined the value of using a large multidimensional dataset collected from soldiers prior to deployment to Afghanistan for predicting post-deployment PTSD status. The dataset consisted of polygenic, epigenetic, metabolomic, endocrine, inflammatory and routine clinical lab markers, computerized neurocognitive testing, and symptom self-reports. The analysis was computed on active-duty Army personnel (N = 473) of the 101st Airborne at Fort Campbell, Kentucky. Machine-learning models predicted provisional PTSD diagnosis 90-180 days post deployment (random forest: AUC = 0.78, 95% CI = 0.67-0.89, sensitivity = 0.78, specificity = 0.71; SVM: AUC = 0.88, 95% CI = 0.78-0.98, sensitivity = 0.89, specificity = 0.79) and longitudinal PTSD symptom trajectories identified with latent growth mixture modeling (random forest: AUC = 0.85, 95% CI = 0.75-0.96, sensitivity = 0.88, specificity = 0.69; SVM: AUC = 0.87, 95% CI = 0.79-0.96, sensitivity = 0.80, specificity = 0.85). Among the highest-ranked predictive features were pre-deployment sleep quality, anxiety, depression, sustained attention, and cognitive flexibility. Blood-based biomarkers including metabolites, epigenomic, immune, inflammatory, and liver function markers complemented the most important predictors. The clinical prediction of post-deployment symptom trajectories and provisional PTSD diagnosis based on pre-deployment data achieved high discriminatory power. The predictive models may be used to determine deployment readiness and to determine novel pre-deployment interventions to mitigate the risk for deployment-related PTSD.
现役军人可能会接触到创伤性战区事件,与普通人群相比,他们患创伤后应激障碍(PTSD)的风险更高。PTSD 会给个人和社会带来高昂的代价,但目前还不太清楚如何确定预测指标,以确定部署准备情况和减轻风险的策略。这项前瞻性纵向自然队列研究——坎贝尔堡队列研究——研究了在部署到阿富汗之前,从士兵身上收集的大型多维数据集在预测部署后 PTSD 状态方面的价值。该数据集包括多基因、表观遗传、代谢组学、内分泌、炎症和常规临床实验室标志物、计算机化神经认知测试和症状自我报告。分析是在肯塔基州坎贝尔堡的第 101 空降师的现役军人(N=473)中进行的。机器学习模型预测部署后 90-180 天的暂定 PTSD 诊断(随机森林:AUC=0.78,95%CI=0.67-0.89,敏感性=0.78,特异性=0.71;SVM:AUC=0.88,95%CI=0.78-0.98,敏感性=0.89,特异性=0.79)和通过潜在增长混合建模确定的纵向 PTSD 症状轨迹(随机森林:AUC=0.85,95%CI=0.75-0.96,敏感性=0.88,特异性=0.69;SVM:AUC=0.87,95%CI=0.79-0.96,敏感性=0.80,特异性=0.85)。在排名最高的预测特征中,有部署前的睡眠质量、焦虑、抑郁、持续注意力和认知灵活性。包括代谢物、表观遗传、免疫、炎症和肝功能标志物在内的基于血液的生物标志物补充了最重要的预测指标。基于部署前数据对部署后症状轨迹和暂定 PTSD 诊断的临床预测具有很高的区分能力。预测模型可用于确定部署准备情况,并确定新的部署前干预措施来减轻与部署相关的 PTSD 风险。