Suppr超能文献

一种强效分支尾脂质纳米颗粒可实现多重 mRNA 递送和基因编辑。

A Potent Branched-Tail Lipid Nanoparticle Enables Multiplexed mRNA Delivery and Gene Editing .

机构信息

Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

出版信息

Nano Lett. 2020 Jul 8;20(7):5167-5175. doi: 10.1021/acs.nanolett.0c00596. Epub 2020 Jun 9.

Abstract

The clinical translation of messengerRNA (mRNA) drugs has been slowed by a shortage of delivery vehicles that potently and safely shuttle mRNA into target cells. Here, we describe the properties of a particularly potent branched-tail lipid nanoparticle that delivers mRNA to >80% of three major liver cell types. We characterize mRNA delivery spatially, temporally, and as a function of injection type. Following intravenous delivery, our lipid nanoparticle induced greater protein expression than two benchmark lipids, C12-200 and DLin-MC3-DMA, at an mRNA dose of 0.5 mg/kg. Lipid nanoparticles were sufficiently potent to codeliver three distinct mRNAs (firefly luciferase, mCherry, and erythropoietin) and, separately, Cas9 mRNA and single guide RNA (sgRNA) for proof-of-concept nonviral gene editing in mice. Furthermore, our branched-tail lipid nanoparticle was neither immunogenic nor toxic to the liver. Together, these results demonstrate the unique potential of this lipid material to improve the management of diseases rooted in liver dysfunction.

摘要

信使 RNA(mRNA)药物的临床转化受到递药载体的限制,这些载体能够有效地将 mRNA 安全递送至靶细胞。在这里,我们描述了一种具有特殊效力的分支状尾部脂质纳米颗粒的特性,该颗粒能将 mRNA 递送至>80%的三种主要的肝实质细胞。我们从空间、时间和注射类型等方面对 mRNA 的递送来进行了表征。静脉注射后,与两种基准脂质 C12-200 和 DLin-MC3-DMA 相比,我们的脂质纳米颗粒在 0.5mg/kg 的 mRNA 剂量下诱导了更高的蛋白表达。脂质纳米颗粒的效力足以共递三种不同的 mRNA(萤火虫荧光素酶、mCherry 和促红细胞生成素),并分别递 Cas9 mRNA 和单指导 RNA(sgRNA),以在小鼠中进行概念验证的非病毒基因编辑。此外,我们的分支状尾部脂质纳米颗粒既没有免疫原性,也没有对肝脏造成毒性。综上所述,这些结果表明了这种脂质材料在改善以肝功能障碍为根源的疾病的治疗方面具有独特的潜力。

相似文献

1
A Potent Branched-Tail Lipid Nanoparticle Enables Multiplexed mRNA Delivery and Gene Editing .
Nano Lett. 2020 Jul 8;20(7):5167-5175. doi: 10.1021/acs.nanolett.0c00596. Epub 2020 Jun 9.
2
Branched-Tail Lipid Nanoparticles Potently Deliver mRNA In Vivo due to Enhanced Ionization at Endosomal pH.
Small. 2019 Feb;15(6):e1805097. doi: 10.1002/smll.201805097. Epub 2019 Jan 13.
3
Ionizable lipid nanoparticles for in utero mRNA delivery.
Sci Adv. 2021 Jan 13;7(3). doi: 10.1126/sciadv.aba1028. Print 2021 Jan.
4
Modular Design of Biodegradable Ionizable Lipids for Improved mRNA Delivery and Precise Cancer Metastasis Delineation In Vivo.
J Am Chem Soc. 2023 Nov 8;145(44):24302-24314. doi: 10.1021/jacs.3c09143. Epub 2023 Oct 19.
6
High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing.
Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):E9944-E9952. doi: 10.1073/pnas.1811276115. Epub 2018 Oct 1.
8
Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA.
Nano Lett. 2018 Jun 13;18(6):3814-3822. doi: 10.1021/acs.nanolett.8b01101. Epub 2018 May 8.
9
Augmented lipid-nanoparticle-mediated in vivo genome editing in the lungs and spleen by disrupting Cas9 activity in the liver.
Nat Biomed Eng. 2022 Feb;6(2):157-167. doi: 10.1038/s41551-022-00847-9. Epub 2022 Feb 21.
10
Integrating Combinatorial Lipid Nanoparticle and Chemically Modified Protein for Intracellular Delivery and Genome Editing.
Acc Chem Res. 2019 Mar 19;52(3):665-675. doi: 10.1021/acs.accounts.8b00493. Epub 2018 Dec 26.

引用本文的文献

1
Peptide codes for organ-selective mRNA delivery.
Nat Mater. 2025 Sep 1. doi: 10.1038/s41563-025-02331-6.
3
The role of excipients in lipid nanoparticle metabolism: implications for enhanced therapeutic effect.
Ther Deliv. 2025 Jul;16(7):687-700. doi: 10.1080/20415990.2025.2506977. Epub 2025 May 29.
4
Branching Ionizable Lipids Can Enhance the Stability, Fusogenicity, and Functional Delivery of mRNA.
Small Sci. 2022 Nov 9;3(1):2200071. doi: 10.1002/smsc.202200071. eCollection 2023 Jan.
5
Lipid Nanoparticles for mRNA Delivery in Cancer Immunotherapy.
AAPS J. 2025 Mar 18;27(3):66. doi: 10.1208/s12248-025-01051-8.
9
Nonviral targeted mRNA delivery: principles, progresses, and challenges.
MedComm (2020). 2025 Jan 2;6(1):e70035. doi: 10.1002/mco2.70035. eCollection 2025 Jan.
10
Impact of administration routes and dose frequency on the toxicology of SARS-CoV-2 mRNA vaccines in mice model.
Arch Toxicol. 2025 Feb;99(2):755-773. doi: 10.1007/s00204-024-03912-1. Epub 2024 Dec 10.

本文引用的文献

1
Using Large Datasets to Understand Nanotechnology.
Adv Mater. 2019 Oct;31(43):e1902798. doi: 10.1002/adma.201902798. Epub 2019 Aug 20.
2
Liver sinusoidal endothelial cells (LSECs) modifications in patients with chronic hepatitis C.
Sci Rep. 2019 Jun 19;9(1):8760. doi: 10.1038/s41598-019-45114-1.
3
Branched-Tail Lipid Nanoparticles Potently Deliver mRNA In Vivo due to Enhanced Ionization at Endosomal pH.
Small. 2019 Feb;15(6):e1805097. doi: 10.1002/smll.201805097. Epub 2019 Jan 13.
4
Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes.
Nat Commun. 2018 Oct 29;9(1):4493. doi: 10.1038/s41467-018-06936-1.
5
Factors Affecting the Absorption of Subcutaneously Administered Insulin: Effect on Variability.
J Diabetes Res. 2018 Jul 4;2018:1205121. doi: 10.1155/2018/1205121. eCollection 2018.
6
Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3351-E3360. doi: 10.1073/pnas.1720542115. Epub 2018 Mar 27.
7
Targeted mRNA Therapy for Ornithine Transcarbamylase Deficiency.
Mol Ther. 2018 Mar 7;26(3):801-813. doi: 10.1016/j.ymthe.2017.12.024. Epub 2018 Jan 4.
10
Pathological process of liver sinusoidal endothelial cells in liver diseases.
World J Gastroenterol. 2017 Nov 21;23(43):7666-7677. doi: 10.3748/wjg.v23.i43.7666.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验