Suppr超能文献

微小核仁 RNA 基因传递可改善 SMA 运动神经元本体感受突触的丢失。

Minor snRNA gene delivery improves the loss of proprioceptive synapses on SMA motor neurons.

机构信息

Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA.

Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA.

出版信息

JCI Insight. 2020 Jun 18;5(12):130574. doi: 10.1172/jci.insight.130574.

Abstract

Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder caused by reduced expression of the survival motor neuron (SMN) protein. SMN has key functions in multiple RNA pathways, including the biogenesis of small nuclear ribonucleoproteins that are essential components of both major (U2-dependent) and minor (U12-dependent) spliceosomes. Here we investigated the specific contribution of U12 splicing dysfunction to SMA pathology through selective restoration of this RNA pathway in mouse models of varying phenotypic severity. We show that virus-mediated delivery of minor snRNA genes specifically improves select U12 splicing defects induced by SMN deficiency in cultured mammalian cells, as well as in the spinal cord and dorsal root ganglia of SMA mice without increasing SMN expression. This approach resulted in a moderate amelioration of several parameters of the disease phenotype in SMA mice, including survival, weight gain, and motor function. Importantly, minor snRNA gene delivery improved aberrant splicing of the U12 intron-containing gene Stasimon and rescued the severe loss of proprioceptive sensory synapses on SMA motor neurons, which are early signatures of motor circuit dysfunction in mouse models. Taken together, these findings establish the direct contribution of U12 splicing dysfunction to synaptic deafferentation and motor circuit pathology in SMA.

摘要

脊髓性肌萎缩症(SMA)是一种遗传性神经肌肉疾病,由运动神经元存活(SMN)蛋白表达减少引起。SMN 在多个 RNA 途径中具有关键功能,包括小核核糖核蛋白的生物发生,小核核糖核蛋白是主要(U2 依赖性)和次要(U12 依赖性)剪接体的重要组成部分。在这里,我们通过在不同表型严重程度的小鼠模型中选择性恢复这种 RNA 途径,研究了 U12 剪接功能障碍对 SMA 病理学的具体贡献。我们表明,通过病毒介导的传递,在培养的哺乳动物细胞中,以及在 SMA 小鼠的脊髓和背根神经节中,特异性地改善了由 SMN 缺乏引起的 U12 剪接缺陷,而不会增加 SMN 的表达。这种方法导致 SMA 小鼠的几种疾病表型参数得到适度改善,包括存活、体重增加和运动功能。重要的是,小核 RNA 基因传递改善了包含 U12 内含子的基因 Stasimon 的异常剪接,并挽救了 SMA 运动神经元上本体感觉突触的严重丧失,这是小鼠模型中运动回路功能障碍的早期特征。总之,这些发现确立了 U12 剪接功能障碍对 SMA 中突触去传入和运动回路病理学的直接贡献。

相似文献

1
Minor snRNA gene delivery improves the loss of proprioceptive synapses on SMA motor neurons.
JCI Insight. 2020 Jun 18;5(12):130574. doi: 10.1172/jci.insight.130574.
2
RNA-sequencing of a mouse-model of spinal muscular atrophy reveals tissue-wide changes in splicing of U12-dependent introns.
Nucleic Acids Res. 2017 Jan 9;45(1):395-416. doi: 10.1093/nar/gkw731. Epub 2016 Aug 23.
5
An SMN-dependent U12 splicing event essential for motor circuit function.
Cell. 2012 Oct 12;151(2):440-54. doi: 10.1016/j.cell.2012.09.012.
6
SMN deficiency alters Nrxn2 expression and splicing in zebrafish and mouse models of spinal muscular atrophy.
Hum Mol Genet. 2014 Apr 1;23(7):1754-70. doi: 10.1093/hmg/ddt567. Epub 2013 Nov 11.
7
SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage.
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2347-E2356. doi: 10.1073/pnas.1613181114. Epub 2017 Mar 7.
9
Chronic Pharmacological Increase of Neuronal Activity Improves Sensory-Motor Dysfunction in Spinal Muscular Atrophy Mice.
J Neurosci. 2021 Jan 13;41(2):376-389. doi: 10.1523/JNEUROSCI.2142-20.2020. Epub 2020 Nov 20.
10
Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.
J Neurosci. 2012 Jun 20;32(25):8703-15. doi: 10.1523/JNEUROSCI.0204-12.2012.

引用本文的文献

1
Stasimon/Tmem41b is required for cell proliferation and adult mouse survival.
Biochem Biophys Res Commun. 2024 Jun 18;712-713:149923. doi: 10.1016/j.bbrc.2024.149923. Epub 2024 Apr 16.
2
Serotonergic dysfunction impairs locomotor coordination in spinal muscular atrophy.
Brain. 2023 Nov 2;146(11):4574-4593. doi: 10.1093/brain/awad221.
3
SMN post-translational modifications in spinal muscular atrophy.
Front Cell Neurosci. 2023 Feb 17;17:1092488. doi: 10.3389/fncel.2023.1092488. eCollection 2023.
4
The SMN Complex at the Crossroad between RNA Metabolism and Neurodegeneration.
Int J Mol Sci. 2023 Jan 23;24(3):2247. doi: 10.3390/ijms24032247.
5
6
SMN controls neuromuscular junction integrity through U7 snRNP.
Cell Rep. 2022 Sep 20;40(12):111393. doi: 10.1016/j.celrep.2022.111393.
7
History of development of the life-saving drug "Nusinersen" in spinal muscular atrophy.
Front Cell Neurosci. 2022 Aug 12;16:942976. doi: 10.3389/fncel.2022.942976. eCollection 2022.
9
Neuromuscular denervation and deafferentation but not motor neuron death are disease features in the Smn2B/- mouse model of SMA.
PLoS One. 2022 Aug 1;17(8):e0267990. doi: 10.1371/journal.pone.0267990. eCollection 2022.
10
Regulation of ER-derived membrane dynamics by the DedA domain-containing proteins VMP1 and TMEM41B.
EMBO Rep. 2022 Feb 3;23(2):e53894. doi: 10.15252/embr.202153894. Epub 2022 Jan 19.

本文引用的文献

2
CRISPR screening using an expanded toolkit of autophagy reporters identifies TMEM41B as a novel autophagy factor.
PLoS Biol. 2019 Apr 1;17(4):e2007044. doi: 10.1371/journal.pbio.2007044. eCollection 2019 Apr.
3
Molecular Mechanisms Underlying Sensory-Motor Circuit Dysfunction in SMA.
Front Mol Neurosci. 2019 Mar 4;12:59. doi: 10.3389/fnmol.2019.00059. eCollection 2019.
4
Stasimon/Tmem41b localizes to mitochondria-associated ER membranes and is essential for mouse embryonic development.
Biochem Biophys Res Commun. 2018 Nov 30;506(3):463-470. doi: 10.1016/j.bbrc.2018.10.073. Epub 2018 Oct 22.
5
TMEM41B is a novel regulator of autophagy and lipid mobilization.
EMBO Rep. 2018 Sep;19(9). doi: 10.15252/embr.201845889. Epub 2018 Aug 20.
7
Genome-wide CRISPR screen identifies as a gene required for autophagosome formation.
J Cell Biol. 2018 Nov 5;217(11):3817-3828. doi: 10.1083/jcb.201804132. Epub 2018 Aug 9.
8
Dysregulation of Mdm2 and Mdm4 alternative splicing underlies motor neuron death in spinal muscular atrophy.
Genes Dev. 2018 Aug 1;32(15-16):1045-1059. doi: 10.1101/gad.316059.118. Epub 2018 Jul 16.
10
Converging Mechanisms of p53 Activation Drive Motor Neuron Degeneration in Spinal Muscular Atrophy.
Cell Rep. 2017 Dec 26;21(13):3767-3780. doi: 10.1016/j.celrep.2017.12.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验