Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 30000, China.
Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
Sci Rep. 2020 Jun 16;10(1):9735. doi: 10.1038/s41598-020-66847-4.
Aberrant methylated genes (DMGs) play an important role in the etiology and pathogenesis of esophageal squamous cell carcinoma (ESCC). In this study, we aimed to integrate three cohorts profile datasets to ascertain aberrant methylated-differentially expressed genes and pathways associated with ESCC by comprehensive bioinformatics analysis. We downloaded data of gene expression microarrays (GSE20347, GSE38129) and gene methylation microarrays (GSE52826) from the Gene Expression Omnibus (GEO) database. Aberrantly differentially expressed genes (DEGs) were obtained by GEO2R tool. The David database was then used to perform Gene ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome pathway enrichment analyses on selected genes. STRING and Cytoscape software were used to construct a protein-protein interaction (PPI) network, then the modules in the PPI networks were analyzed with MCODE and the hub genes chose from the PPI networks were verified by Oncomine and TCGA database. In total, 291 hypomethylation-high expression genes and 168 hypermethylation-low expression genes were identified at the screening step, and finally found six mostly changed hub genes including KIF14, CDK1, AURKA, LCN2, TGM1, and DSG1. Pathway analysis indicated that aberrantly methylated DEGs mainly associated with the P13K-AKT signaling, cAMP signaling and cell cycle process. After validation in multiple databases, most hub genes remained significant. Patients with high expression of AURKA were associated with shorter overall survival. To summarize, we have identified six feasible aberrant methylated-differentially expressed genes and pathways in ESCC by bioinformatics analysis, potentially providing valuable information for the molecular mechanisms of ESCC. Our data combined the analysis of gene expression profiling microarrays and gene methylation profiling microarrays, simultaneously, and in this way, it can shed a light for screening and diagnosis of ESCC in future.
异常甲基化基因(DMGs)在食管鳞状细胞癌(ESCC)的病因和发病机制中发挥重要作用。在这项研究中,我们旨在通过综合生物信息学分析,整合三个队列的谱数据集,确定与 ESCC 相关的异常甲基化-差异表达基因和途径。我们从基因表达综合数据库(GEO)下载了基因表达微阵列(GSE20347、GSE38129)和基因甲基化微阵列(GSE52826)的数据。使用 GEO2R 工具获得异常差异表达基因(DEGs)。然后使用 DAVID 数据库对选定基因进行基因本体论(GO)分析和京都基因与基因组百科全书通路富集分析。使用 STRING 和 Cytoscape 软件构建蛋白质-蛋白质相互作用(PPI)网络,然后使用 MCODE 分析 PPI 网络中的模块,并从 PPI 网络中选择枢纽基因,通过 Oncomine 和 TCGA 数据库进行验证。在筛选步骤中,共鉴定出 291 个低甲基化-高表达基因和 168 个高甲基化-低表达基因,最终发现包括 KIF14、CDK1、AURKA、LCN2、TGM1 和 DSG1 在内的六个变化最大的枢纽基因。通路分析表明,异常甲基化的 DEGs 主要与 P13K-AKT 信号通路、cAMP 信号通路和细胞周期过程相关。在多个数据库中验证后,大多数枢纽基因仍然显著。AURKA 高表达的患者总生存期较短。总之,我们通过生物信息学分析鉴定了 ESCC 中六个可行的异常甲基化-差异表达基因和途径,为 ESCC 的分子机制提供了有价值的信息。我们的数据结合了基因表达谱微阵列和基因甲基化谱微阵列的分析,同时,这为未来 ESCC 的筛选和诊断提供了新的思路。