Suppr超能文献

基于多种配体-受体相互作用构建配体特征对人 A 类 GPCR 的虚拟筛选

Virtual Screening of Human Class-A GPCRs Using Ligand Profiles Built on Multiple Ligand-Receptor Interactions.

机构信息

Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

J Mol Biol. 2020 Aug 7;432(17):4872-4890. doi: 10.1016/j.jmb.2020.07.003. Epub 2020 Jul 9.

Abstract

G protein-coupled receptors (GPCRs) are a large family of integral membrane proteins responsible for cellular signal transductions. Identification of therapeutic compounds to regulate physiological processes is an important first step of drug discovery. We proposed MAGELLAN, a novel hierarchical virtual-screening (VS) pipeline, which starts with low-resolution protein structure prediction and structure-based binding-site identification, followed by homologous GPCR detections through structure and orthosteric binding-site comparisons. Ligand profiles constructed from the homologous ligand-GPCR complexes are then used to thread through compound databases for VS. The pipeline was first tested in a large-scale retrospective screening experiment against 224 human Class A GPCRs, where MAGELLAN achieved a median enrichment factor (EF) of 14.38, significantly higher than that using individual ligand profiles. Next, MAGELLAN was examined on 5 and 20 GPCRs from two public VS databases (DUD-E and GPCR-Bench) and resulted in an average EF of 9.75 and 13.70, respectively, which compare favorably with other state-of-the-art docking- and ligand-based methods, including AutoDock Vina (with EF = 1.48/3.16 in DUD-E and GPCR-Bench), DOCK 6 (2.12/3.47 in DUD-E and GPCR-Bench), PoLi (2.2 in DUD-E), and FINDSITECcomb2.0 (2.90 in DUD-E). Detailed data analyses show that the major advantage of MAGELLAN is attributed to the power of ligand profiling, which integrates complementary methods for ligand-GPCR interaction recognition and thus significantly improves the coverage and sensitivity of VS models. Finally, cases studies on opioid and motilin receptors show that new connections between functionally related GPCRs can be visualized in the minimum spanning tree built on the similarities of predicted ligand-binding ensembles, suggesting a novel use of MAGELLAN for GPCR deorphanization.

摘要

G 蛋白偶联受体(GPCRs)是一大类负责细胞信号转导的完整膜蛋白。鉴定调节生理过程的治疗化合物是药物发现的重要第一步。我们提出了 MAGEL-LAN,这是一种新颖的分层虚拟筛选(VS)管道,它从低分辨率的蛋白质结构预测和基于结构的结合位点识别开始,然后通过结构和正构结合位点比较来检测同源 GPCR。然后,从同源配体-GPCR 复合物构建的配体图谱用于穿过化合物数据库进行 VS。该管道首先在针对 224 个人类 A 类 GPCR 的大规模回顾性筛选实验中进行了测试,MAGEL-LAN 的中位富集因子(EF)达到 14.38,明显高于使用单个配体图谱的 EF。接下来,MAGEL-LAN 在来自两个公共 VS 数据库(DUD-E 和 GPCR-Bench)的 5 和 20 个 GPCR 上进行了检查,结果平均 EF 分别为 9.75 和 13.70,与其他最先进的对接和基于配体的方法相比具有优势,包括 AutoDock Vina(在 DUD-E 和 GPCR-Bench 中的 EF=1.48/3.16),DOCK 6(在 DUD-E 和 GPCR-Bench 中的 EF=2.12/3.47),PoLi(在 DUD-E 中的 EF=2.2)和 FINDSITECcomb2.0(在 DUD-E 中的 EF=2.90)。详细数据分析表明,MAGEL-LAN 的主要优势归因于配体分析的强大功能,该功能整合了配体-GPCR 相互作用识别的互补方法,从而显著提高了 VS 模型的覆盖范围和敏感性。最后,对阿片受体和胃动素受体的案例研究表明,在基于预测配体结合集合相似性构建的最小生成树中,可以可视化功能相关 GPCR 之间的新联系,这表明 MAGEL-LAN 可用于 GPCR 去孤儿化的新用途。

相似文献

1
Virtual Screening of Human Class-A GPCRs Using Ligand Profiles Built on Multiple Ligand-Receptor Interactions.
J Mol Biol. 2020 Aug 7;432(17):4872-4890. doi: 10.1016/j.jmb.2020.07.003. Epub 2020 Jul 9.
2
FINDSITE(comb): a threading/structure-based, proteomic-scale virtual ligand screening approach.
J Chem Inf Model. 2013 Jan 28;53(1):230-40. doi: 10.1021/ci300510n. Epub 2012 Dec 28.
3
PoLi: A Virtual Screening Pipeline Based on Template Pocket and Ligand Similarity.
J Chem Inf Model. 2015 Aug 24;55(8):1757-70. doi: 10.1021/acs.jcim.5b00232. Epub 2015 Aug 12.
4
Reliability of AlphaFold2 Models in Virtual Drug Screening: A Focus on Selected Class A GPCRs.
Int J Mol Sci. 2024 Sep 21;25(18):10139. doi: 10.3390/ijms251810139.
6
[Receptor-ligand docking simulation for membrane proteins].
Yakugaku Zasshi. 2007 Jan;127(1):123-31. doi: 10.1248/yakushi.127.123.
7
A benchmarking study on virtual ligand screening against homology models of human GPCRs.
Proteins. 2018 Sep;86(9):978-989. doi: 10.1002/prot.25533. Epub 2018 Sep 23.
8
Improving virtual screening of G protein-coupled receptors via ligand-directed modeling.
PLoS Comput Biol. 2017 Nov 13;13(11):e1005819. doi: 10.1371/journal.pcbi.1005819. eCollection 2017 Nov.
9
Docking and Virtual Screening Strategies for GPCR Drug Discovery.
Methods Mol Biol. 2015;1335:251-76. doi: 10.1007/978-1-4939-2914-6_17.
10
Efficiency of Homology Modeling Assisted Molecular Docking in G-protein Coupled Receptors.
Curr Top Med Chem. 2021;21(4):269-294. doi: 10.2174/1568026620666200908165250.

引用本文的文献

1
GPCR-A17 MAAP: mapping modulators, agonists, and antagonists to predict the next bioactive target.
J Cheminform. 2025 Jul 11;17(1):102. doi: 10.1186/s13321-025-01050-z.
2
AiGPro: a multi-tasks model for profiling of GPCRs for agonist and antagonist.
J Cheminform. 2025 Jan 29;17(1):12. doi: 10.1186/s13321-024-00945-7.
3
Opsin expression varies across larval development and taxa in pteriomorphian bivalves.
Front Neurosci. 2024 Mar 18;18:1357873. doi: 10.3389/fnins.2024.1357873. eCollection 2024.
5
Recent Progress of Protein Tertiary Structure Prediction.
Molecules. 2024 Feb 13;29(4):832. doi: 10.3390/molecules29040832.
6
Application of Mixed-Solvent Molecular Dynamics Simulations for Prediction of Allosteric Sites on G Protein-Coupled Receptors.
Mol Pharmacol. 2023 May;103(5):274-285. doi: 10.1124/molpharm.122.000612. Epub 2023 Mar 3.
7
Thermodynamic architecture and conformational plasticity of GPCRs.
Nat Commun. 2023 Jan 9;14(1):128. doi: 10.1038/s41467-023-35790-z.
10
Ligand Docking Methods to Recognize Allosteric Inhibitors for G-Protein-Coupled Receptors.
Bioinform Biol Insights. 2021 Oct 28;15:11779322211037769. doi: 10.1177/11779322211037769. eCollection 2021.

本文引用的文献

2
FINDSITE: A New Approach for Virtual Ligand Screening of Proteins and Virtual Target Screening of Biomolecules.
J Chem Inf Model. 2018 Nov 26;58(11):2343-2354. doi: 10.1021/acs.jcim.8b00309. Epub 2018 Oct 16.
3
Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein Recognition Process: An Overview.
Front Pharmacol. 2018 Aug 22;9:923. doi: 10.3389/fphar.2018.00923. eCollection 2018.
4
The RCSB protein data bank: integrative view of protein, gene and 3D structural information.
Nucleic Acids Res. 2017 Jan 4;45(D1):D271-D281. doi: 10.1093/nar/gkw1000. Epub 2016 Oct 27.
5
GPCR-Bench: A Benchmarking Set and Practitioners' Guide for G Protein-Coupled Receptor Docking.
J Chem Inf Model. 2016 Apr 25;56(4):642-51. doi: 10.1021/acs.jcim.5b00660. Epub 2016 Mar 24.
6
The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors.
Br J Pharmacol. 2015 Dec;172(24):5744-869. doi: 10.1111/bph.13348.
7
PoLi: A Virtual Screening Pipeline Based on Template Pocket and Ligand Similarity.
J Chem Inf Model. 2015 Aug 24;55(8):1757-70. doi: 10.1021/acs.jcim.5b00232. Epub 2015 Aug 12.
8
GPCR-I-TASSER: A Hybrid Approach to G Protein-Coupled Receptor Structure Modeling and the Application to the Human Genome.
Structure. 2015 Aug 4;23(8):1538-1549. doi: 10.1016/j.str.2015.06.007. Epub 2015 Jul 16.
9
GLASS: a comprehensive database for experimentally validated GPCR-ligand associations.
Bioinformatics. 2015 Sep 15;31(18):3035-42. doi: 10.1093/bioinformatics/btv302. Epub 2015 May 13.
10
DOCK 6: Impact of new features and current docking performance.
J Comput Chem. 2015 Jun 5;36(15):1132-56. doi: 10.1002/jcc.23905.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验