Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus for Biotechnology and Sustainability, 94315 Straubing, Germany.
Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
Curr Opin Biotechnol. 2020 Dec;66:44-51. doi: 10.1016/j.copbio.2020.06.010. Epub 2020 Jul 13.
Functional carbohydrate polymers are of immense industrial interest for high value applications. Distinct biosynthetic pathways allow for metabolic engineering approaches for production in microbial cell factories. The most common strategies in recent years included the attenuation of central carbon metabolism, improved substrate utilization or enhanced intracellular sugar nucleotide precursor levels. Recombinant expression in more suitable surrogate host organisms has demonstrated remarkable results for the heterologous production of glycosaminoglycans. However, industrial application of pharmacological active functional polysaccharides is often limited by costly post-polymerization modifications and downstream processing. With increasing knowledge of bottleneck enzymes and fluxes, it will be possible to enable a sustainable microbial production of high value polysaccharides and tailor artificial polymers towards specific applications.
功能性碳水聚合物因其在高价值应用中的巨大工业价值而受到广泛关注。独特的生物合成途径使得在微生物细胞工厂中进行生产的代谢工程方法成为可能。近年来,最常见的策略包括削弱中心碳代谢、改善底物利用或提高细胞内糖核苷酸前体水平。在更合适的替代宿主生物中进行重组表达,已证明在糖胺聚糖的异源生产中取得了显著的效果。然而,具有药理活性的功能性多糖的工业应用通常受到昂贵的聚合后修饰和下游加工的限制。随着对瓶颈酶和通量的了解不断增加,有可能实现高价值多糖的可持续微生物生产,并根据特定应用定制人工聚合物。