Garcia-Perez Isabel, Posma Joram M, Serrano-Contreras Jose Ivan, Boulangé Claire L, Chan Queenie, Frost Gary, Stamler Jeremiah, Elliott Paul, Lindon John C, Holmes Elaine, Nicholson Jeremy K
Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Campus, Imperial College London, London, UK.
Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, South Kensington Campus, Imperial College London, London, UK.
Nat Protoc. 2020 Aug;15(8):2538-2567. doi: 10.1038/s41596-020-0343-3. Epub 2020 Jul 17.
Metabolic profiling of biological samples provides important insights into multiple physiological and pathological processes but is hindered by a lack of automated annotation and standardized methods for structure elucidation of candidate disease biomarkers. Here we describe a system for identifying molecular species derived from nuclear magnetic resonance (NMR) spectroscopy-based metabolic phenotyping studies, with detailed information on sample preparation, data acquisition and data modeling. We provide eight different modular workflows to be followed in a recommended sequential order according to their level of difficulty. This multi-platform system involves the use of statistical spectroscopic tools such as Statistical Total Correlation Spectroscopy (STOCSY), Subset Optimization by Reference Matching (STORM) and Resolution-Enhanced (RED)-STORM to identify other signals in the NMR spectra relating to the same molecule. It also uses two-dimensional NMR spectroscopic analysis, separation and pre-concentration techniques, multiple hyphenated analytical platforms and data extraction from existing databases. The complete system, using all eight workflows, would take up to a month, as it includes multi-dimensional NMR experiments that require prolonged experiment times. However, easier identification cases using fewer steps would take 2 or 3 days. This approach to biomarker discovery is efficient and cost-effective and offers increased chemical space coverage of the metabolome, resulting in faster and more accurate assignment of NMR-generated biomarkers arising from metabolic phenotyping studies. It requires a basic understanding of MATLAB to use the statistical spectroscopic tools and analytical skills to perform solid phase extraction (SPE), liquid chromatography (LC) fraction collection, LC-NMR-mass spectroscopy and one-dimensional and two-dimensional NMR experiments.
生物样品的代谢谱分析为多种生理和病理过程提供了重要见解,但由于缺乏自动注释和用于候选疾病生物标志物结构解析的标准化方法而受到阻碍。在此,我们描述了一种用于识别基于核磁共振(NMR)光谱代谢表型研究衍生的分子种类的系统,包括样品制备、数据采集和数据建模的详细信息。我们根据难度级别提供了八个不同的模块化工作流程,并建议按顺序遵循。这个多平台系统涉及使用统计光谱工具,如统计全相关光谱(STOCSY)、参考匹配子集优化(STORM)和分辨率增强(RED)-STORM,以识别NMR光谱中与同一分子相关的其他信号。它还使用二维NMR光谱分析、分离和预浓缩技术、多个联用分析平台以及从现有数据库中提取数据。使用所有八个工作流程的完整系统最多需要一个月时间,因为它包括需要较长实验时间的多维NMR实验。然而,使用较少步骤的较简单识别案例需要2到3天。这种生物标志物发现方法高效且具有成本效益,可增加代谢组的化学空间覆盖范围,从而更快、更准确地确定代谢表型研究中由NMR产生的生物标志物。使用统计光谱工具需要对MATLAB有基本的了解,以及进行固相萃取(SPE)、液相色谱(LC)馏分收集、LC-NMR-质谱和一维及二维NMR实验的分析技能。