Suppr超能文献

贝宁:生物增强型网络推理。

BENIN: Biologically enhanced network inference.

机构信息

Computer Science and Software Engineering, Concordia University, 1455 Boulevard de Maisonneuve Ouest, Montreal, Quebec H3G1M8, Canada.

出版信息

J Bioinform Comput Biol. 2020 Jun;18(3):2040007. doi: 10.1142/S0219720020400077.

Abstract

Gene regulatory network inference is one of the central problems in computational biology. We need models that integrate the variety of data available in order to use their complementarity information to overcome the issues of noisy and limited data. : iologically nhanced etwork ference is our proposal to integrate data and infer more accurate networks. is a general framework that jointly considers different types of prior knowledge with expression datasets to improve the network inference. The method states the network inference as a feature selection problem and uses a popular penalized regression method, the , combined with bootstrap resampling to solve it. significantly outperforms the state-of-the-art methods on the simulated data from the DREAM 4 challenge when combining genome-wide location data, knockout gene expression data, and time series expression data.

摘要

基因调控网络推断是计算生物学中的核心问题之一。我们需要整合各种可用的数据模型,以利用它们的互补信息来克服数据噪声和有限的问题。生物增强网络推断是我们提出的一种整合数据并推断更准确网络的方法。这是一个通用框架,它联合考虑了不同类型的先验知识和表达数据集,以提高网络推断的准确性。该方法将网络推断表述为特征选择问题,并使用一种流行的惩罚回归方法,即,结合引导重采样来解决问题。当结合全基因组位置数据、基因敲除表达数据和时间序列表达数据时,该方法在 DREAM4 挑战赛的模拟数据上的表现明显优于最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验